Old Dominion University
A to Z Index  |  Directories


Lytton John Musselman

Musselman Pages



EDIBLE, TOXIC, ANDUSEFUL LOCAL PLANTS

BIOLOGY 319

Fall 2001

Old Dominion University


Lytton John Musselman

Scharlene Floyd

Call Number: 13726

Updated 4 October 2001


Welcome to Biology 319!!

This is a unique course, unique because it is specially designed to use local plants and mushrooms. Obviously, there is no textbook for such a restricted area so we will be using material I have written. In addition, there is a lot of information from the course web site and syllabus (see below).

You will have hands-on experience in preparing foods, dyes, paper, and cordage. To help you collect necessary materials, I have scheduled two field trips. These are optional but it is to your advantage to participate in at least one of them.


Course Objectives

Here are my objectives for Biology 319:

1. Recognize toxic plants and mushrooms.

2. Recognize and learn uses of native plants and mushrooms for food, fiber, and dyes.


Tentative Schedule

Week Date Topic

1 28 August T Plant structure

30 August R Plant structure

2 4 September T Poison ivy, poison oak, poison sumac and their relatives

6 September R Mushroom determination

3 11 September T Dyes from mushrooms

13 September R TEST I

4 18 September T PROJECT TIME

20 September R PROJECT TIME

5 25 September T Poisonous plants

27 September R Mushrooms

6 2 October T Mushrooms

3 October W FIELD TRIP (See instructions for field trips)

4 October R Campus field trip

7 9 October T Edible wild plants-Complete

11 October R No class (Inaguration of President Runte)

8 16 October T Edible Mushrooms

18 October R Exam--Covers all material since last exam

20 October S FIELD TRIP (See instructions for field trips)

9 23 October T Fibers for cordage and paper

25 October R Dyes

10 30 October T Dyes

1 November R Paper

11 6 November T Paper

8 November R TEST III

12 13 November T Cordage

15 November R Cordage

13 20 November T Project time

22 THANKSGIVING

14 27 November T Project presentations

29 November R NO CLASS Natural Foods Dinner 630p

15 4 December T Project presentations

6 December R TEST IV


Tentative Basis for Determining Final Grade in Biology 319

Four Tests, 100 points each 400=400

Project 50

Natural food 50

TOTAL POINTS: 500


Grading Scale

A 90-100

B 80-89

C 70-79

D 60-69

F Below 60


Why is Schedule Tentative?

We are dependent on the season for some of our class material, especially mushrooms. This means we may have to rearrange some of the topics accordingly.

Tests

All tests cover material since the previous test and will be given during class time.

OFFICE HOURS 302F MGB

Thursday 2-4 and other times by appointment. Don't hesitate to make an appointment! I will put a list of times I am available each week on the door of my office. Check the times and, if convenient, sign up. Include your phone number and email address.

My phone is 683 361, fax 683 5283 and email: lmusselm@odu.edu I will establish a class email list for announcements and general communication so please give me your account number. Include it in on the form on page 7 (information form). To contact Scharlene Floyd, SAF@odu.org


Attendance Policy

You are not required to attend any class but you are responsible to know everything covered in class. This includes announcements, schedule changes, quizzes, and tests.

Posting of Grades

Grades will be posted on the LEO web site.

Academic Dishonesty

My policy on cheating and other forms of academic dishonesty will follow the university's guidelines. However, the first step is direct discussions between the purported offender and myself.

Safety

We will be harvesting and eating wild foods. Please let me know of any allergies you may have. No one is required to eat or taste any wild foods. I also appreciate that some of you do not eat or drink products with caffeine or alcohol.

How are Plants Determined?

"Determining" a plant means recognizing it and giving it a name. It is synonymous in many ways with identification. Please give some thought as to how you recognize organisms. It may seem esoteric but will ultimately aid you in putting a name on the hundreds of plants you will see in this course. I suggest the following are important.

1. Character states. These are physical aspects of the plant-morphology, color, smell, etc. What is the shape of the plant and its parts? A subset of this is the process of contrast/comparison by which we consciously or unconsciously compare the plant with other plants we know and thus eliminate some names.

2. Habitat and associated species. This is perhaps the most subtle of the techniques we use and becomes of value only when we know the ecology of a particular region.

4. Other.


Texts
Arora, D. 1986. Mushrooms Demystified. Berkeley: Ten Speed Press. [Outrageous is probably a good word to describe this valuable book. The author's humor comes out in places where you would expect technical terms and explanations. It remains the best single book to identify mushrooms in North America. I find it indispensable.]

Peterson, L. A. 1977. Edible Wild Plants Eastern/Central North America. New York: Houghton-Mifflin. [This is a good general book for edible plants, especially when used in conjunction with other resources.]


Good Botanical Web Sites

The world wide web is in such a state of flux that it is impossible to list new sites as they appear. I recommend two excellent sites as course resources where you can find information on a vast array of plants, fungi, and algae. The first is Scott's Botanical Links. The second is Internet Directory for Botany.

There could be some overlap between the two sites.


Web Site

This is a web enhanced course. This means that we will make extensive use of the web while still having regular class meetings. You must have dependable access to the web in order to take this course. In addition to a hard copy, the syllabus is on the web. In the web copy, there are links to images on the ODU Plant Site. This will be demonstrated in class. Our class web site is here.

Course Components

PROJECTS


Projects should be enjoyable! Through your project, I want you to gain an appreciation of how plants are used--whether for food, dyes, or paper. Choose a simple, workable, project.

TESTS

There are four tests. Each test will cover material since the last test. These are essay tests.

NATURAL FOODS

In previous years, students have particularly enjoyed preparing foods from native plants. On Thursday 29 November, we will have a natural food banquet. Plan now for this project! It is important to think of what food you will prepare because you will have to locate material in a place where you have permission to collect and then prepare it. It may be necessary to prepare your food and then freeze it because the plant you are working with produces early in the semester. Read the introductory material in the edible plants section of the syllabus.

FIELD TRIPS

To enable you to collect material and help you with identifying plants and mushrooms, I have scheduled two field trips. The first is on Wednesday 3 October, the second is Saturday 20 October. These will take most of the day. Please let me know which trip, if any, you will be going on.

STUDENT INFORMATION FORM--Due 31 August!!

YOUR NAME: STUDENT NUMBER:

I. Number of credit hours in biology.

II. Expected year and semester of graduation.

III. Chief reason for taking this course.

IV. Previous botany/plant courses (if any).

V. Your email address:

Note! You must have an email address to receive notices for this course. Grades will also be distributed via email. Each ODU student is assigned an email account but you must activate it. Or, you can use another email system.


Toxic Plants

One of the goals of this course is to introduce you to native plants that you can eat. However, no one is required to ingest any wild plant or mushroom. Remember, you may be allergic to some plants and/or mushrooms. While this is different than poisoning, an allergic reaction may also be very unpleasant. You eat wild foods at your own discretion. Never eat unknown mushrooms! And never eat a mushroom which has not been carefully identified and verified. Please sign this statement, noting that you understand the potential danger of eating wild plants.

NAME__________________________ SIGNATURE______________________

DATE_________


PROJECTS

Cordage


Virtually all cordage material (that is, material used to make ropes and similar devices such as cords, etc.) was derived from plants until the advent of synthetic fibers. Even now, the best ropes for certain purposes are prepared from plants.

The purpose of this exercise is to prepare cordage from a native plant. Following are some examples of cordage from student reports. They will help you understand the process of making cordage as well as submitting similar reports on the plants you work with. Projects are listed by plant.

Scirpus americanus (Swordgrass) Click here for Scirpus americanus Images

Process: Fresh stems, which are sharply triangular with internal hollow spaces, were cut and then flattened between two blocks of wood. This collapsed the stem and made it more pliable. Originally stones were tried for flattening, but they damaged the tissue. The ends of three flattened stems were tacked to a surface to keep them taut while braiding. After being allowed to dry for over a week, shrinkage made the braid loosen, so all the strands were undone and re braided tighter. Knots in the material itself were used to tie off ends.

Making Cordage from Yucca Click here for yucca Images

Step 1. Cut the leaves from the Yucca stem. The leaves should be green and not rotten.

Step 2. Pound the leaves rigorously with a blunt instrument, such as a hammer, until the leaf material loosens from the fibers.

Step 3. Using a wire brush, carefully comb the leaves in one direction to separate the plant material from the fibers. Repeat this step for the opposite side until all the fiber is separated.

Step 4. Place the fibers in chlorine bleach for 1-15 minutes and rinse. This step is not absolutely necessary if chlorine bleach is not readily available.

Step 5. Repeat steps 1 through 4 for two more Yucca leaves, for a total of three bunches of fibers.

Step 6. Braid the three bunches of fibers together. This step requires attaching one end of each bunch to a fixed point, such as a nail in a board.

Step 7. The rope is now complete and can be left to air dry.

Needle rush, Juncus roemarianus Click here for Juncus roemarianus Images

This plant was found along a marshy area in Knotts Island. A sharp knife was used to cut down the base of the plants. When making the larger piece of rope, several bands of the plant were cut and allowed to dry for a couple of days. The next step was the braiding of the three bands of the plant. After that, three sections of the braided pieces were then braided and intertwined with each other.

When making the smaller piece of rope, a fresh-cut band from the plant was taken and divided into three pieces and then braided. The smaller piece has a smoother texture and seems to be more durable. It was also easier to braid the smaller, fresh-cut piece than the piece that was allowed to dry for a couple of days. Both samples made an excellent rope that could be used for various reasons. (From a student report).


HOW TO SUBMIT CORDAGE PROJECTS

Use a string tag to identify your rope. On the tag place your name(s). On a separate sheet of paper indicate your name(s), the name of the plant, and how the cordage was prepared. Be precise in your description of the process. Your rope will not be returned to you, so if you want a sample of your work make extra rope.

You will also submit a web report. Directions for this will be given later in the course.


DYES FROM PLANTS AND MUSHROOMS

We will use three steps in preparing the yarn and dye: scouring, mordanting, dyeing.

1. Scouring. This is a thorough cleansing of the fiber to be dyed and is especially important in cotton thread as oil is often present; this oil will interfere with the fiber's ability to take up mordants and dyes. For cotton-place the skein in about a gallon of water with a teaspoon of washing soda and a small quantity of detergent (Ivory Liquid is advised). Boil gently for a minimum of two hours. Remove, rinse thoroughly with water of the same temperature and mordant immediately although the cotton may be dried and used later. If you are using linen, the solutions are the same but do not boil, just simmer and repeat the process twice. Mordant or dry. For wool, use detergent (no soda is necessary) in hot water. Pour over the wool and leave overnight. Silk is placed in detergent water and simmered until it no longer feels slimy.

2. Mordanting. We will try four mordants: tannin, alum, basic alum, and alum tartar. Some of these mordants work better on some fibers than others but will shall try all for each fiber.

A. Tannin. This is prepared by dissolving 1 ounce of tannic acid in a gallon of water. Soak the fiber for up to 24 hours (try overnight). Tannin can also be derived from the bark of many different plants.

B. Alum. Two ounces of alum in a gallon of water. Soak for about two hours.

C. Basic alum. This is prepared by mixing two solutions, alum and soda. Alum is prepared by dissolving 8 ounces of alum in a gallon of hot water soda by using 1 ounce per pint. These are labeled on the containers. Mix equal parts before using. Place the fiber in the mordant as soon as bubbles have stopped. Leave overnight.

D. Alum tartar. Use 22 g alum in one gallon of hot water. After this has dissolved, add 7 g cream of tartar and stir until dissolved. Simmer for about one hour, remove the fiber and blot but do not dry completely.

Remember to always use non-reactive vessels such as glass or enamel when mordanting and dyeing. Always take care to cover the fiber with the solution.


Plants and Specific Instructions

1. Yellow. Golden rod. Solidago spp. Collect twice as much (by weight) of flowers (upper leaves and stems can be included) as wool being dyed. Place flowers in cold water. Boil one hour. Strain. Use an alum-mordanted wool while liquid is lukewarm. Simmer one hour. Rinse.

2. Yellowish to reddish brown. Sumac. Rhus glabra or Rhus typhina- Click here for Rhus typhina Images Not to be confused with poison sumac, Rhus vernix, which has white berries. Pick berries in fall. Use one pound for each skein of wool. Boil 1 ½ hours. Strain. Use alum-mordanted wool. Simmer one hour or longer. Rinse. Can also be used to dye cotton.

3. Red to Pink. Pokeweed. Phytolacca americana. Click here for Phytolacca americana. Images Use an equal amount of berries as wetted wool by weight. Pick berries in early fall. Boil one hour. Wash. Strain. For deep red, add ½ cup vinegar (4% acetic acid) per gallon of dye bath. Add wetted wool. Simmer 1/2 hour or longer depending upon shade desired. Rinse. For pink, use above, but omit vinegar and use two tablespoons alum per gallon of dye bath.

4. Dark brown-light brown. Walnut. Juglans nigra. Click here walnut Images Collect fruits in fall. Let dry. Remove outer layer of fruit; discard seed. Soak overnight. Use 1x-15 fruits per skein of wool. Boil two hours. Strain. No mordant is necessary since material contains tannic acid. However, alum will result in greater color fastness. Strain. Use wetted wool. Simmer one hour or until desired shade is reached. For darker brown, a few sumac berries can be added.

5. Orange. Onion. Allium cepa. Use skin from one pound of onions. Boil 30 minutes. Strain. Use alum-mordanted wool. Simmer one hour. Rinse.

6. Red to yellow-brown. Apple. Pyrus malus. Use 1/2 pound of outer bark. Soak overnight. Boil two hours. Strain. Use alum-mordanted wool. Simmer one hour. Rinse.

7. Yellow. Tomato. Lycopersicon esculentum. Use two plants per skein of wool. Chop plant into small segments. Boil two hours. Strain. Use alum-mordanted wool. Simmer one hour. Rinse.

8. Dark yellow. Dock. Rumex obtusifolius or other species. Click here for Rumex spp. Images Use ½ pound of roots only. Soak overnight. Boil one hour. Strain. Use alum-mordanted wool. Heat to boiling. Simmer one hour. Rinse.

9. Pink. Prickly pear cactus. Opuntia humifusa Click here for Opuntia humifusa. Images Use fruits only. It is advantageous to use gloves when collecting fruits. About ½ quart of fruits are needed for a skein of wool. Place fruits in large bowl and wash. Add wool and warm water. Allow material to ferment for ten days. Rinse well.

1. Bright yellow. Dodder. Cuscuta spp. Click here for Cuscuta spp. Images Use entire plants but take care to remove bits of host material. Boil two hours. Use alum-mordanted wool.

11. Purple. Purple loosestrife. Lythrum salicaria. Click here for Lythrum salicaria Images Use the flower stalks of this noxious weed which is causing so much damage in freshwater wetlands. Boil; reduce heat and add wool. Leave overnight. The addition of ferrous sulphate (add enough to make water black) will intensify the dye.


Dyeing Assignment

Use at least two different fibers: wool, linen, or cotton. You can select a plant or a mushroom as your dye.

Try at least three mordants tannic acid, alum, basic alum, and alum tartar as well as no mordant.

Turn in your samples mounted on stiff boards (the kind that are used for posters) cut to a size no larger than 12 x 18 inches (preferably smaller). Include detailed instructions on the plants you used, their origin, how they were prepared (including storage), mordants (including times), and dyes. On a separate piece of paper, give the details of preparation of the dye.

You can also turn in you report as a web project.


Mushrooms

For images of common mushrooms in our area, go to the Biology 221 syllabus mushroom gallery (you will have to scroll down to that section of the syllabus).

Emergency

Toxic Mushroom Determination


1. Try to locate where the mushroom was growing and collect additional mushrooms. Take care to carefully dig them, as the portion underground may be essential for accurate identification. Collect in various stages of development, if possible, to ensure that some will produce spores. Spores are necessary for determination of most mushrooms.

2. Place the mushrooms in a paper -- Must be paper!! B bag. Mushrooms will sweat and rapidly decompose in a plastic bag. Do not wash the mushroom.

3. Bring the mushroom to room 110, Mills Godwin Building on the Old Dominion University campus. Include the name and phone number of the physician and the approximate time that the mushroom was ingested.

4. The mycoflora of our area is imperfectly known, so that placing a species name on the specimen may not be possible. In my experience, however, it is likely that the patient (usually a child) has ingested one of the more frequent and therefore better known fungi.

There are various classes of toxins in mushrooms, the most deadly being phallotoxins and amatoxins which do permanent damage to the liver. These are known almost exclusively from the species in the genera Amanita and Galerina . Other mushrooms cause serious gastrointestinal upset. Some are hallucinogenic but also contain toxins. In some cases, the reaction to eating mushrooms is a simple food allergy.

In my more than twenty years of identifying toxic plants and mushrooms, none have been fatal. But deadly poisonous mushrooms are part of our native mycoflora and any case of ingestion of an unknown mushroom must be considered potentially very serious.

Lytton John Musselman


MUSHROOM ABUSE

Are you guilty? Not a pretty sight(1). Decapitated bodies. Broken parts strewn carelessly. All are victims of violent, senseless abuse. I witness it on campus at the end of the summer and the beginning of the new semester, especially when it is hot and humid.

Mushroom abuse--a little known form of violence on the ODU campus.

How can we stop this? How can we show that mushrooms need to be cared for, not kicked? Do we need mushroom sensitivity training at Preview? Is this the sort of program fraternities could take on? We are fortunate at ODU to have a diversity of mushroom species. Perhaps as many as thirty occur on campus, a valuable resource for my mushroom course. And their presence adds diversity and intrigue to our campus. Apart from mushroom devotees, however, they are not only unappreciated but positively reviled.

Why? Perhaps people think mushrooms are intrinsically evil, because they seem to appear suddenly from the nether world and disappear below ground just as suddenly. Or, mushrooms may be associated with a drug subculture. Or they are feared for their toxins. Our campus mushrooms are neither psychedelic nor evil. Some are toxic, but so are some common plants which are valued. They are only doing their job of recycling organic material. In fact, their appearance is dependent on nothing less mundane than weather.

Hot, humid weather brings on the most spectacular mushroom displays on campus. Mushrooms are mainly water. Using hydrostatic pressure, mushrooms enter campus life literally pumped up only to be met with disgust and jeers-- and violence.

The largest of the late summer/early fall mushrooms is the green gilled lepiota, Chlorophyllum molybdites. Click here for Chlorophyllum molybdites Images Often these mushrooms form a nearly perfect circle on the lawn called a "fairy ring," another image from the supernatural. Their growth and development are a marvel of nature. First, a drum stick shaped brownish white structure emerges from the grass. On the second day the cap expands, sometimes to a radius of 8-10 inches. Ghostly white, the cap resembles a summer parasol. It may have light brown scales on the cap. Overnight its appearance changes, especially if the weather is hot and dry. It becomes brown and the edges of the cap turn up. From a drum stick, to a parasol, to a pagoda in four days or less!

If you remove the cap at the parasol stage and place it on a sheet of white paper for a few hours, an intricate pattern of sordid green spores is deposited. These green spores give the mushroom its common name and its scientific name. Chlorophyllum means green leaf. Molybdites is from molybdenum, a trace metal that forms compounds that are green. The green gilled lepiota is toxic if ingested. Symptoms include serious gastrointestinal distress. NEVER eat an unknown mushroom! Remember the old adage: There are Old mushroom hunters and there are BOLD mushroom hunters but there are NO OLD BOLD mushroom hunters!

Edible mushrooms also grace our university campus. Right here within sight from my office in Mills Godwin are several populations of the delectable mushroom French chefs refer to as champignon, a close relative of the commercial mushroom. Not available in stores, this fungus has a distinct flavor---a combination of filet mignon and black walnut. Just last week I collected ten caps walking across campus to my house in Larchmont. Sauteed in butter, they never saw the light of another day and will never return to their nether home. A form of abuse? No, a form of use!

I wonder if abusers think the organism's life is snuffed out by a football kick. Hardly. As any student of mushrooms knows, the visible above ground part of the fungus is only a tiny part of the total organism. Almost the entire mushroom is underground, hidden from view and safe from abuse. Mushrooms are the largest of all known creatures. Bigger than blue whales, redwoods, and even dinosaurs. Scientists reported one mushroom in Upper Michigan that spanned more than a county!

Mushroom abusers take note--your flailing at these defenseless, fleshy denizens of the lawn is futile. Pick on someone your own size!


MUSHROOM POISONING Is There Really High Morbidity and Mortality?

INTRODUCTION


Mushroom exposures can invoke anxiety in the lay public and even in the most experienced physicians(2). The typical exposure scenario may involve a curious child who elected to harvest and sample a mushroom found in the yard. The child eventually tells a sibling, caretaker or parent about the episode which prompts an urgent call to a poison information center or physician or results in a hurried trip to an emergency department. Both the physician and parent are reminded of the anecdote about mushroom poisoning:

"There are OLD mushroom hunters...

There are BOLD mushroom hunters...

But there are NO OLD-BOLD mushroom hunters!"

Thoughts of the child's survival immediately come to mind. The child's "stomach is pumped" and furious efforts are made to identify the mushroom from the gastric lavage returns by trying to compare the remnants to pictures of mushrooms in a mycology reference text. The parents are sent home to find samples of the mushroom that may have been eaten. The emergency department staff attempts to locate an individual who can identify the mushroom to determine if exotic antidotes must be administered.

This exercise in futility and anxiety occurs daily throughout the United States. In reality, there are poisonous mushrooms but the typical exposure involves the ingestion of an "LBM" - Little Brown Mushroom! No symptoms develop, the child is fine and life goes on. In fact, only 14 mushroom-related fatalities (out of 85,556 documented mushroom exposures) have been reported to the American Association of Poison Control Centers over the last eleven years! This represents a fatality incidence of only 0.016% compared to a 23-fold greater incidence of 0.37% following antidepressant over dosage.

Nearly 75% of mushroom exposures involve children less than six years of age. It is rare for a fatality to occur in this age group. Most fatalities involve adults who forage for delectable mushrooms and fail properly to identify the mushrooms before consuming them. Other tragic cases involve individuals who seek hallucinogenic mushrooms, but unknowingly pick a mushroom with potential to produce a profound hepatotoxicity. While there are only a limited number of very toxic mushrooms, the best advice is to purchase mushrooms from the grocery store unless the individual is adequately trained in mushroom identification

Only exposures involving highly suspect mushrooms or in symptomatic patients necessitate absolute identification of the mushroom. Locating a mycologist to identify the mushroom is often a difficult task. Poison information centers usually have consultants available to assist in mushroom identification in the rare circumstance when that is necessary. To reiterate, most mushroom exposures do not result in the development of symptoms and require no heroic intervention. However, there are several common classes of poisonous mushrooms which have general toxidromes, knowledge of which may be useful in the diagnosis and treatment of mushroom poisoning. This issue will provide an overview of the salient features associated with each class.


GENERAL APPROACH TO MUSHROOM EXPOSURE

Despite the fact that most mushroom exposures involving children have a favorable outcome, it may be advisable to induce vomiting with syrup of ipecac if the exposure is recognized within approximately one hour of the ingestion. Emesis may be induced in the home. If there is a substantial delay and no symptoms have developed, observation maybe sufficient. Activated charcoal administration is a suitable alterative in patients who have sought assistance in an emergency department. It is prudent to save a sample of the mushroom placed in a paper bag and in the refrigerator for possible future identification in the unlikely event that the patient becomes symptomatic. This is not always fail-safe since poisonous and nonpoisonous mushrooms may grow side- by-side.

As a general rule, if symptoms develop within approximately two hours of the ingestion, it is unlikely that the mushroom is one of the potentially fatal hepatotoxic varieties. There is often a delay of several hours, usually over six hours, before symptoms develop if a very poisonous mushroom has been ingested. Once again, caution must be exercised since an individual may ingest poisonous mushrooms which produce early but not life-threatening symptoms, in conjunction with hepatotoxic mushrooms which produce a delayed onset of symptoms-the delayed symptoms falsely may be assumed to be associated with the less toxic variety. These problems reinforce the need to seek mushroom identification in patients who become symptomatic. Some symptoms associated with mushroom poisoning are identical to those observed with food poisoning. Be aware that food poisoning may be the etiology of the illness. A careful history of the patient's illness and information about others who may have eaten the same meal and possible mushroom identification may resolve this dilemma. All individuals who become symptomatic following the ingestion of a possibly poisonous mushroom should be referred to the emergency department for evaluation. Good supportive care, symptomatic treatment and fluid and electrolyte replacement are adequate therapy in most mushroom poisoning cases.


COMMON CLASSIFICATIONS OF MUSHROOM POISONING

Cyclopeptide Poisoning


No group of mushrooms instills more fear or is more toxic than those containing cyclopeptide amatoxins. The synonyms for the mushrooms which contain these are indicative of their morbid potential-"Death Angel," "Destroying Angel," "Death Cap." Click here for Amanita Images The Amanita speices [sic] is responsible for most of the cyclopeptide-related fatalities and small amounts can be profoundly toxic. Members of the Galerina species [sic] are generally smaller mushrooms and contain less amatoxin per gram of mushroom. While they are very toxic and have the potential to produce death, they are less often associated with fatal outcomes.

These mushrooms contain numerous cyclopeptides, but amatoxins appear to be the predominant toxins responsible for the hepatic and renal destruction which may accompany the ingestion of the mushrooms. Hepatic necrosis, similar to that produced by acetaminophen over dosage, is the primary toxic manifestation. In general there is a delay of 6-12 hours (it may be longer) before the onset of severe gastrointestinal toxicity. The delay is pathognomonic of exposure to amatoxins. Therefore, if a patient has a late presentation of symptoms following mushroom ingestion, cyclopeptide poisoning should be considered in the differential diagnosis. The initial symptomatic period may be followed by a period of subjective improvement for 1-2 days. Thereafter, the manifestations of liver and kidney failure become apparent.

The management of Amanita or Galerina mushroom poisoning is often fraught with confusion and indecision. Since the onset of symptoms is delayed, gastric decontamination is of little value unless subsequent servings of the mushrooms have been ingested. Activated charcoal may be used if the gastrointestinal symptoms, such as vomiting, do not prevent administration. There is no approved antidote available in the United States. Thioctic acid was touted to be lifesaving after early reports from Europe in the 1960s. However, clinical studies have not confirmed the efficacy of thioctic acid. Penicillin G in huge doses of up to 1,000,000 Units/kg/day has been demonstrated to be effective in animals by preventing the uptake of amatoxins by the liver. The data are encouraging but there is insufficient human experience to confirm its benefit absolutely. Cimetidine, as a P450 system inhibitor, has been studied in mice on the rationale that the amatoxins require metabolic conversion to produce the toxic metabolite. Positive outcomes ensued, but there is no human data to demonstrate efficacy. The most promising agent is silibinin, an extract from the milk thistle plant. It is not available in the United States, but European experience in toxic patients is good. Silibinin allegedly prevents amatoxins from penetrating hepatocytes.

The best therapy is good supportive care and symptomatic treatment. Penicillin and cimetidine use may be justified given the lack of other options. Hemodialysis is ineffective in eliminating the toxins but is used to treat the sequelae of the liver and renal damage. Orthotopic liver transplantation may be the only option in severe cases.


Monomethylhydrazine Poisoning

The Morel mushroom is one of the most highly-sought edible mushrooms. It is conical in shape and porous, resembling a sponge. The novice mushroom picker may pick the "false morel" which is hollow like the morel but convoluted and not porous. These mushrooms are represented by the genus Gyromitra and contain gyromitrin which is bioconverted to monomethylhydrazine (MMH), which is also a component of rocket fuel.

Like the cyclopeptide-containing mushrooms, those which contain MMH do not produce symptoms for several hours (6-12 hours), and these poisonings are often mis diagnosed as Amanita or Galerina poisonings. However, the mushrooms are so different in physical appearance that the identification can usually be made from the history alone. The initial symptoms include profound gastroenteritis and flu-like symptoms which may continue for days. Central nervous system effects of vertigo, in coordination and seizures may occur. Hepatotoxicity and hepatorenal syndrome may develop in severe cases.

The delay in the onset of symptoms and the extreme nature of the gastrointestinal manifestations often preclude the use of any type of gastrointestinal decontamination. Supportive and symptomatic care with emphasis on fluid and electrolyte replacement will suffice inmost cases. Pyridoxine in doses similar to those used to treat iso-niazid toxicity (5-20 gm) is sometimes used to treat the central nervous system toxicity since gyromitrin is a pyridoxine antagonist which ultimately influences GABA formation.


Coprine Poisoning

The "Inky Cap," named as such for the black fluid which elutes from the cap of the mushroom when it matures, is a common yard mushroom which often grows in "fairy rings" or circles which outline where tree stumps are decaying below the soil surface. Some mushroom hunters consume these members of the Coprinus species [sic] Click here for Coprinus Images but they must avoid the consumption of ethanol for several days since this mushroom, in conjunction with ethanol, is infamous for producing a disulfiram-like reaction.

The reaction may include a headache, flushing, vomiting, palpitations, paresthesias, chest pain and other clinical findings consistent with a disulfiram reaction. Onset of symptoms may occur within minutes to 2-3 hours of ingestion ethanol and the symptoms may persist for 1-2 days in extreme cases. An index of suspicion and a good history can solve the diagnostic predicament which is often diagnosed as food poisoning, an allergic reaction, or Chinese Restaurant Syndrome.

Supportive and symptomatic care are the cornerstones of therapy.


Muscarine Poisoning

An age-old treatment recommendation for mushroom poisoning was the prophylactic administration of atropine. This was based upon the cholinergic symptoms which developed after ingesting some mushrooms. This recommendation was inappropriately extended to the treatment of all mushroom poisoning cases. The Inocybe and Clitocybe species have very high concentrations of muscarine which results in cholinergic poisoning-salivation, lacrimation, urination, defecation, miosis, bardycardia, diaphoresis, etc.

The presentation of symptoms, which includes nausea, vomiting and abdominal pain, is within minutes to two hours after the ingestion. The rapid onset of symptoms essentially rules out the cyclopeptide and MMH groups of mushrooms from serious diagnostic consideration

Gastrointestinal decontamination using emesis or activated charcoal may be useful if the symptoms do not prevent the administration of either ipecac or charcoal. Fluid and electrolyte needs should be monitored closely. Atropine administration may be necessary if warranted by the cholinergic symptoms.


Ibotenic Acid and Muscimol-Containing Mushrooms

The colorful Amanita muscaria, Click here for Amanita muscaria Images with the orange to red cap speckled with white flecks (often referred to as warts) which are remnants of the protective veil covering the mushroom as it protrudes through soil, frequently adorns the covers of mycology books and is often portrayed in many fairy tales, including "Alice in Wonderland." Many hear only "Amanita" and conclude that death is imminent, when in actuality there are few bad outcomes following the ingestion of this mushroom.

Psychoactive compounds, ibotenic acid and muscimol, produce distortions of reality. The symptoms may be manifest within 30 minutes(once again separating this variety [sic] of Amanita from those containing cyclopeptide), persist for hours, and produce a state of inebriation (in coordination, euphoria, confusion, drowsiness). Fever and seizures can occur as manifestations of severe intoxication.

The name of the most common representative of this type of mushroom, Amanita muscaria, provides the misconception that the mushroom contains muscarine and should accordingly be treated with atropine. Muscarine is not present in pharmacologically relevant amounts and atropine should not be used. As with many other mushrooms, treatment is largely supportive and symptomatic.


Hallucinogenic Mushrooms

"Funny mushrooms," as they often are called due to their psychoactive properties, primarily include members of the Psilocybe and Paneolus species [sic]. For abuse purposes, the mushrooms are eaten fresh or dried, generally in large quantities to produce hallucinogenic effects.

Depending upon the presence of other food in the stomach, the quantity of mushrooms ingested and the concentration of the hallucinogens such as psilocybin, the toxic and hallucinogenic manifestations begin over a period of 30 minutes to three hours (the symptoms should rule out cyclopeptide ingestion). Inappropriate behavior, confusion, disorientation, visual hallucinations, dilated pupils and blurred vision may occur. Gastrointestinal irritation including nausea and vomiting also are relatively common. There have been reports of fever, coma and seizure activity following the abuse of these mushrooms.

Most patients report to the emergency department several hours after exposure for treatment of the dysphoric aspects of toxicity and gastrointestinal component. The symptoms usually resolve within a period of six hours and supportive care is the cornerstone of treatment.


MAKE ROOM FOR MUSHROOMS

Mushrooms may not be a nutritional powerhouse like broccoli or carrots, but they are not just a tasty decoration(3). A 3.5-ounce portion (about 1.5 cups) of raw Agaricus bisporus, the common cultivated mushroom sold in supermarkets, supplies 25% of an adult's niacin needs (plus other B vitamins), more than 10% of the iron needs, more potassium than an orange, and some fiber and protein, yet only 25 calories and no fat or sodium. (Canned mushrooms are less nutritious and are loaded with sodium and, sometimes, butter.)

Many markets now also stock exotic varieties, such as orange- colored chanterelles, delicate enoki, and intensely flavorful shiitake mushrooms have slightly more calories but fewer minerals than the ordinary variety. Dried shiitake mushrooms have highly concentrated calories and minerals by weight, but because of their strong flavor they are used in much smaller quantities. Dried mushrooms must be soaked before cooking.

When buying button mushrooms, pick those with firm, plump, tightly closed caps for best texture and flavor. Avoid those that are shriveled or bruised. If the gills show, they should be pink or tan, not dark and spongy. Store loose mushrooms unwashed in a paper bag in the refrigerator-a sealed plastic bag will hasten deterioration-and use as soon as possible. Store packaged mushrooms unopened. Dried mushrooms will keep for up to six months in a cool, dark place.

The stems of fresh mushrooms are just as good to eat as the caps; trim the stems only if they're woody. Before cooking them, wash the mushrooms quickly; don't soak them. They don't need to be cooked in oil or butter; instead saute them in a little chicken broth, or broil them. Don't throw out the flavorful and nutritious liquid they yield when cooked-use it for cooking grains or vegetables. There's no need for fatty toppings, which will overpower their delicate taste.

Raw mushrooms contain potentially toxic substances called hydrazines, some of which have been shown, in large doses, to cause cancer in laboratory animals. Many hydrazines, including the most harmful types, are highly volatile and are destroyed by heat. Drying has a similar effect.

Most people don't eat large quantities of raw mushrooms. In any case, the amount of hydrazines contained in a serving of raw mushrooms is apparently small. Practically all plant foods contain natural substances that protect the plants against predators. Some of these have been shown to have adverse effects on animals, but few effects on humans. Hydrazines appear to be among this group. Still, if you eat mushrooms often, eat them cooked, not raw. There's another reason to cook your mushrooms: cooking actually makes some of the nutrients more available to the body by breaking down the fibrous cell walls and destroying some nutrient-blocking compounds.


Abbreviated Guide to some Edible and Poisonous Plants of the Tidewater, Virginia
Area

This treatment is not exhaustive and the listing or non-listing of a species here does not attest to its palatability or toxicity. The guide is in eight parts. Part one deals with precautions in collecting and using edible wild plants. Be thoroughly familiar with this material! The second part is the universal taste test which should only be used under emergency listing of some edible plants including the most common and how they are prepared. The fourth deals with teas and the fifth with fall fruits and nuts; some of this material is also covered in part two. The sixth part is a collection of recipes for elderberry fruits and flowers as this common shrub is at its peak of flowering during the course. The last part summarizes features of some of the more important toxic plants. Section seven deals only with plants which cause internal poisoning; and section eight deals with dermatitis causing plants.

IMPORTANT!

PESTICIDES. Unfortunately there is a good possibility that some of the plants you harvest, especially those that are weeds in agricultural crops, or along roads may have been sprayed with some toxic substance. More disconcerting is the fact that there is no way that you can determine if the plant has been sprayed. As a precaution, do not collect where it is obvious that spraying has occurred. You may be able to determine this by checking for "burning" on the leaves of trees and shrubs. Secondly, thoroughly wash whatever you collect. This is always a good idea. Obviously, in remote areas there is less likelihood that plants have been sprayed.

FUNGAL TOXINS. Some fungal toxins are extremely poisonous substances and are carefully screened for in commercial food production. Of these, aflatoxins are perhaps the most serious. To lessen the chances that these toxins are present, collect only fresh seeds and fruits, not those which have been on the ground for some time. Moist conditions will promote the growth of these organisms.

ERGOT FUNGUS. This is Claviceps purpurea, image an Ascomycete and very poisonous. It was the cause of the "St Anthony's fire" of the middle ages when people were poisoned by eating flour contaminated with ergot. It is found on several native grasses. The sclerotium, an overwintering body of the fungus, forms in the developing ovary of the grass so that the fungus and the grain are mature at the same time. The sclerotium is a hard, black structure extending horn-like from the grain. Examine any wild grasses very carefully for this dangerous fungus! It often forms impressive infections on salt marsh cordgrass, Spartina alterniflora in our area.

NATURAL VARIABILITY IN THE PLANTS. Native plants, including weeds, are more variable than cultivated plants. Thus, some individuals may contain more or less toxic or sub-toxic compounds than other plants of the same species. There is, of course, no way to predict this as both environmental and inherent genetic factors may be involved. One example is the foliage of the common chokecherry. Some plants have high concentrations of cyanide compounds, other plants have low concentrations of the same compounds.

NATURAL VARIABILITY IN PERSONS. Some people are simply more susceptible to gastric upset from plants than other people. If you are sensitive, avoid unknown wild plants or, if you wish, taste only a very small quantity. If you are extremely sensitive to poison ivy, avoid products from this family including drinks made from sumacs (genus Rhus which makes a delicious cooling drink!), mangos, and cashews.

POISON PLANTS THAT LOOK LIKE EDIBLE PLANTS. The great culprits here are the parsley family (Apiaceae) and the nightshade family (Solanaceae) although there may be others. Both families are well represented in our local flora. If the plant has finely dissected leaves and an umbel or ball-shaped inflorescence and you are uncertain as to its determination, avoid eating it as it could be the deadly poison hemlock (Conium maculatum), image , water hemlock (Cicuta maculata), image a species of Angelica, or another genus containing poisonous species. Likewise, the fruits of some nightshades are edible and delicious including-in addition to the well-known tomato and eggplant-species of Physalis which have fruits which superficially resemble those of the toxic nightshades (genus Solanum).

BITTERNESS IN WILD PLANTS. Many wild plants including acorns, water lily rhizomes, some wild grains and a diversity of other plants may have high concentrations of very bitter substances. These are not harmful in small quantities but they do interfere with the palatability of the plants. Boiling in several changes of water will help remove these substances which are usually tannin compounds.

OXALATES IN PLANTS. There are many plants that have high concentrations of oxalate compounds. These are very bad on the kidneys. Boiling usually destroys these. In fact, there are many valuable wild foods that contain oxalates. Don't eat them raw, however. Oxalates will usually produce a sharp burning sensation in your mouth.

DERMATITIS CAUSING PLANTS. These include poison ivy (Rhus radicans, sometimes known as Toxicodendron radicans), poison oak (Rhus toxicodendron), and poison sumac (Rhus vernix). You MUST be able to recognize each of these. I have pictures at the ODU plant site: poison ivy, and poison ivy.

You can also check out a Canadian site which has some pictures and other helpful information.

COMMON SENSE. This is a very desirable attribute in the pursuit of edible wild plants. Know the plant you are dealing with. Be certain of its identity. Know which parts are edible and how they are prepared. Be very cautious about experimenting by yourself! If you are a serious wilderness camper, know which plants are suitable emergency foods. Be familiar with the literature on edible wild plants.

PERMISSION TO COLLECT. Be certain that you have permission from the land owner to collect specimens.


UNIVERSAL TASTE TEST

This outline is adapted from one used by the military in survival courses. It is to be used only under emergency conditions because you are at risk from ingesting potentially toxic plants.

1. Test only one part of a potential food plant at a time.

2. Break the plant into its basic components-leaves, stems, roots, buds, and flowers.

3. Smell the food for strong or acid odors. Keep in mind that smell alone does not indicate a plant is inedible.

4. Do not eat for 8 hours before starting the test.

5. During the 8 hours you are abstaining from eating, test for contact poisoning by placing a piece of the plant part you are testing on the inside of your elbow or wrist. Usually 15 minutes is enough time to allow for a reaction.

6. During the test period, take nothing by mouth except purified water and the plant part being tested.

7. Select a small portion of a single component and prepare it the way you plan to eat it.

8. Before putting the prepared plant part in your mouth, touch a small portion (a pinch) to the outer surface of the lip to test for burning or itching.

9. If after 3 minutes there is no reaction on your lip, place the plant part on your tongue, holding it there for 15 minutes.

10. If there is no reaction, thoroughly chew a pinch and hold it in your mouth for 15 minutes. DO NOT SWALLOW.

11. If no burning, itching, numbing, stinging, or other irritation occurs during the 15 minutes, swallow the food.

12. Wait 8 hours. If any ill effects occur during this period, induce vomiting and drink a lot of water.

13. If no ill effects occur, eat a half cup of the same plant part prepared the same way.Wait another 8 hours.If no ill effects occur, the plant part as prepared is safe for eating.

CAUTION: Test all parts of the plant for edibility, as some plants have both edible and inedible parts. Do not assume that a part that proved edible when cooked is also edible when raw. Test the part raw to ensure edibility before eating raw.


3-SOME EDIBLE PLANTS OF THE TIDEWATER AREA

1. Common Name: Water lily

Scientific Name: Nymphaea odorata Click here for Nymphaea odorata Images

Description: These water plants have a thick, fleshy rhizome that grows in the mud and large leaves that float on the surface of the water. The large flowers are white and fragrant.

Edible Parts: All species have large quantities of starch.

Preparation: Peel off the tough outer portion to obtain the starch in their rhizomes.

2. Common Name: Sassafras

Scientific Name: Sassafras albidum Click here for Sassafras albidum Images

Description: You can recognize this shrub or small tree by the different leaves borne on the same plant. Some leaves will have one lobe, some two lobes and some no lobes. Flowers are small and yellow and are borne early in the spring. The fruits are dark blue. Sassafras can be found at the margins of roads and forests, usually in open sunny areas.

Edible Parts: The young twigs and leaves can be eaten fresh or dried. The underground portions of the plant can be used to make a refreshing drink.

Preparation: Dig the underground portions, peel off the bark and let it dry then boil it in water to prepare sassafras tea. The dried young twigs and leaves can be added to soups and can be purchased in stores as gumbo filee.

3. Common Name: Sand nettle

Scientific Name: Cnidoscolus stimulosus Click here for Cnidoscolus stimulosus Images

Description: Herbaceous plants with a five parted-leaf. The leaves and stems are covered with stinging hairs which cause dermatitis.

Edible Parts: The underground storage organ is a good source of starch.

Preparation: Dig the tuber (it may be a foot or more underground). Boil and eat.

4. Common Name: Prickly pear cactus

Scientific Name: Opuntia humifusa and other species. Click here for Opuntia humifusa Images

Description: These cacti have flat, pad-like stems that are green and covered with abundant round furry dots that contain collections of sharp pointed hairs. They are found in arid and semi-arid regions and dry sandy areas of wetter regions.

Edible Parts: All parts of the plant are edible.

Preparation: Peel the fruits and eat fresh or crush to prepare a refreshing drink. Take care to avoid the tiny pointed hairs.

Medical Uses: Split the pads and apply to wounds to promote healing.

Other Uses: The pads are a good source of water but you must take care to peel them so as not get the sharp hairs in your mouth.

5. Common Name: Pokeweed

Scientific Name: Phytolacca americana Click here for Phytolacca americana Images

Description: Pokeweed grows to a height of as much as 1 feet. The leaves are elliptic and up to 3 feet in length. Many large clusters of purple fruits are produced late in the season. It is found in open, sunny areas.

Edible Parts: Collect the leaves and stems early in the season while they are still tender and can easily be crushed. The fruits are reported to be edible if cooked. I advise caution.

Preparation: Boil the young leaves and stems twice, discarding the water from the first boiling.

Poisonous Parts-CAUTION!!: All parts of this plant are poisonous if eaten raw! Never eat the underground portions of the plant as these contain the highest concentrations of the poisons.

Other Uses: For dyeing cloth, mix equal parts of berries and water. Bring to a boil and soak the cloth in the mixture at a full boil.

6. Common Name: Persimmon

Scientific Name: Diospyros virginiana Click here for Diospyros virginiana Images

Description: Persimmons are deciduous trees with alternate, dark green leaves with entire margins. Leaves are elliptical in shape, and the flowers are inconspicuous. You can recognize the fruits by their orange color, sticky consistency and several seeds. It is a common forest margin tree.

Edible Parts: The leaves are a good source of vitamin C. The fruits can be eaten raw or baked.

Preparation: A tea can be prepared by drying the leaves and soaking them in hot water.

Poisonous Parts-CAUTION!! Some persons are unable to digest persimmon pulp.

7. Common Name: Nut sedge

Scientific Name: Cyperus esculentus Click here for Cyperus esculentus Images

Description: Recognize this very common plant by its triangular stem and grass-like leaves.The flowers and developing fruits are brown. This important survival food can be looked for in moist sandy areas and is often an abundant weed in cultivated fields.

Edible Parts: Dig the plant and locate the swollen bases.

Preparation: These can be eaten raw, boiled or baked to provide a nutritious food.

Other Uses: I have seen dried tubers sold in West Africa for burning as a mosquito repellant.

8. Common Name: Cattail

Scientific Name: Typha latifolia and other species Click here for Typha species Images

Description: Cattails are grass-like plants with strap shaped leaves 1/2 to 2 inches wide and growing up to 6 feet tall. There are several species but you can easily recognize all as cattails.

The male flowers are borne in a dense mass above the female flowers. These last only a short time leaving the female flowers which develops into the brown cattail. Pollen from the male flowers is often abundant and bright yellow. Look for cattails in full sun at the margins of lakes, streams, canals, ditches, rivers, and brackish water.

Edible Parts: Collect the young tender shoots and eat them either raw or cooked. The rhizome is often very tough but is a rich source of starch. The pollen is also a source of abundant starch.

Preparation: Pound the rhizome to remove the starch, use as a flour. When immature and still green, the female portion may be boiled and eaten like corn on the cob.

9. Common Name: British soldier's lichen

Scientific Name: Cladonia rangiferina Click here for Cladonia Images

Description: This is a very common lichen in much of North America. It is a low growing plant only a few inches tall and grey green in color. This lichen does not flower but does produce bright red reproductive structures. Look for this lichen in open dry areas.

Edible Parts: The entire plant is edible but has a crunchy brittle texture when dry.

Preparation: Soak the plant in water with some wood ashes to remove bitterness. Then dry, crush and add to milk or other food.

10. Common Name: Blackberries, raspberries, and dewberries

Scientific Name: Rubus species Click here for Rubus species Images

Description: These familiar plants have alternate, usually compound leaves and frequently are armed with sharp prickles. The fruits may be red, black, yellow, or orange in color. These plants prefer open sunny areas in a diversity of habitats at the margin of woods, lakes, streams, and roads.

Edible Parts: The young stems are edible when the hard outer covering is peeled off. The fruits are a good source of vitamin C when eaten fresh.

11. Common Name: Indian potato (Eskimo potato)

Scientific Name: Claytonia species Click here for Claytonia species Images

Description: All species of Claytonia are somewhat fleshy plants only a few inches tall with showy flowers about an inch across. Some species occur in rich forests where the flowers are conspicuous before the leaves develop. Western species are found in sagebrush or alpine meadows.

Edible Parts: The tubers are a good, tasty source of starch.

Preparation: Dig the plant and follow the delicate stem to the underground brown tuber. The tubers should be boiled before eating. They resemble potatoes in their texture and taste.

Caution: Uncommon in our area. Do not destroy. But often abundant in the mountains and further north.

12. Common Name: Japanese knotweed

Scientific Name: Polygonum cuspidatum NO IMAGE AVAILABLE

Description: This is a shrub-like plant with leaves that are heart shaped and up to 18 inches long. The flowers are bright pink.

Edible Parts: Both the underground portions and the young stems can be eaten.

Preparation: Collect the stems when young and boil them. The young rootstocks can also be prepared the same way.

Medicinal Parts: CAUTION!!! large quantities of the plant may have a laxative affect.

NOTE: There are related species which can also be eaten.

13. Common Name: Spatterdock, yellow water lily

Scientific Name: Nuphar luteum Click here for Nuphar luteum Images

Description: Flowers are 1 inch across, yellow and develop into bottle shaped fruits. The fruits are green when ripe. Leaf shape is somewhat variable. Leaves are up to 2 feet long with a triangular notch at the base. It is found in shallow water (usually never deeper than six feet) that is quiet and fresh.

Edible Parts: All parts of the plant are edible. The fruits contain several dark-brown seeds which can be parched. The large rootstock is filled with starch.

Preparation: Parch or roast the seeds, then grind into flour. Dig the rootstock out of the mud and peel off the outside. Boil the flesh. Sometimes the rootstock contains large quantities of a very bitter compound. Boiling in several changes of water may remove this.

14. Common Name: Sorrel

Scientific Name: Rumex acetosella Click here for Rumex acetosella Images

Description: These plants seldom are more than a foot tall. They have alternate leaves often with arrow-like bases, very small flowers and frequently reddish stems. Large quantities of plants are often found growing in a small area. Look for them in old fields and other disturbed areas. (This plant should not be confused with many other unrelated plants called sorrel).

Edible Parts: The plants are edible raw or they can be boiled and eaten as a vegetable.

Poisonous Parts-CAUTION!! They contain oxalates which could be damaging if eaten in large quantities. Cooking apparently destroys this compound.

15. Common Name: Arrowleaf

Scientific Name: Sagittaria latifolia Click here for Sagittaria latifolia Images

Description: Arrowleaf is recognized by its arrow-shaped leaf, up to 18 inches to 2 feet long and 8 inches wide. The flowers are white with 3 petals. The plant bears potato-like tubers at its base late in the season. Look for arrowleaf in ditches, marginsof streams and lakes, and in marshes.

Edible Parts: The tubers are edible.

Preparation: Dig the tubers and boil them. The raw tubers contain a milky substance which may be bitter. Cooking destroys this.

Poisonous Parts-CAUTION!! There are several aquatic plants which have leaves similar to those of arrowleaf. Be certain the plant lacks prickles, has milky juice, and white flowers before eating.

16. Common Name: Pigweed

Scientific Name: Amaranthus species Click here for Amaranthus species Images

Description: These plants are abundant weeds in many parts of the world. The flowers which are very small and not easily seen are borne in dense clusters at the top of the plants. However, by

shaking the tops of older plants you will be able to tell if seeds are present. The seeds may be brown or black. All Amaranthus have alternate simple leaves; some red color may be present on the stems. Look for Amaranthus as weeds in crops, roadside plants, or in disturbed waste areas.

Edible Parts: All parts are edible but some species may have sharp spines which should be removed before eating. The young plants or growing tips of older plants are an excellent vegetable. The seeds are very nutritious.

Preparation: You can eat the seeds raw, boil them, or grind them into flour. Simply boil the young plants or eat raw.

17. Common Name: Lotus

Scientific Name: Nelumbo lutea (New World); N. nucifera (Old) images of both species

Description: There are only two species of lotus; one with yellow flowers and the other with pink flowers. The flowers are large and very showy and for this reason have been widely planted throughout the world. The leaves may float on the surface of the water or be emerged and may become very large, often reaching five feet in radius. The fruit is a distinctive structure, flattened and containing up to 2 hard seeds. Lotus are found in quiet freshwater.

Edible Parts: You may eat any part of the lotus plant raw or cooked. The underwater parts of the plant contain large quantities of starch. Collect the young leaves or seeds which have a very pleasant flavor and are nutritious.

Preparation: Harvest the fleshy portions from the mud and bake or boil them. Boil the young leaves and eat as a vegetable. The seeds may be eaten raw, or parched and ground into flour.

18. Common Name: Broad leaf lawn plantain

Scientific Name: Plantago major, P. rugelii Click here for Plantago species Images

Description: These are readily recognized by their broad leaves, over 1 inch across, which are borne close to the ground. The flowers are on a spike which arises from the middle of the cluster of leaves. Lawn plantains are common weeds in lawns and along roads.

Edible Parts: The young leaves are a good source of food.

Preparation: Collect the leaves and eat them raw as a vegetable or boil them. Select the very youngest leaves, however, as strong fibers develop in the older leaves.

19. Common Name: Dandelion

Scientific Name: Taraxacum officinale Click here for Taraxacum officinale Images

Description: This is a well known and often abundant weed. The leaves grow close to the ground and are seldom more than eight inches long with a jagged edge. The flowers are bright yellow. The juice of dandelions is milky, this is normal and does not mean the plant is poisonous. It can be found in open sunny locations.

Edible Parts: There are several species of dandelion and all are edible. All parts of the plant can be eaten.

Preparation: The leaves are easily gathered and can be eaten raw although they tend to be bitter. The roots can be boiled and eaten as a carrot-like vegetable but they may be bitter. For a coffee substitute, dig the roots, wash and roast until dark brown.

20. Common Name: Rock tripe

Scientific Name: Umbellicaria species NO IMAGES AVAILABLE

Description: Look for this plant forming large patches with curling edges on rocks and boulders. The top of the plant is usually black. The side near the rock is lighter in color.

Edible Parts: You can eat the entire plant.

Preparation: Scrape the plant off the rock and wash to remove the grit. The plant may be dry and crunchy; soak it in water until soft. Rock tripes may contain large quantities of bitter substances and soaking or boiling in several changes of water should remove the bitter material.

Poisonous Parts-CAUTION!! There are some reports of poisoning from rock tripe so apply the universal taste test. Use only in an emergency.

21. Common Name: Wild Rose

Scientific Name: Rosa species Click here for Rosa species Images

Description: Roses are shrubs with alternate leaves, sharp prickles, showy, usually fragrant flowers, and a red, dry fruit.

Edible Parts: The flowers and fruits are edible.

Preparation: The flowers can be eaten raw or boiled. Soaked in water, they make a refreshing drink. The fruits add a good flavor to hot drinks. In an emergency, the young shoots can be peeled and eaten. Fresh, young leaves can be made into a tea. Medicinal Parts: The fruit is an excellent source of vitamin C.

Poisonous Parts-CAUTION!! Eat only the outer portion of the fruit as the seeds of some species are quite prickly and can cause internal distress. Also, the leaves have the potential of a slight toxicity so should be used only after the universal taste test. Use only in an emergency.

22. Common Name: Orach

Scientific Name: Atriplex species Click here for Atriplex species Images

Description: You can recognize this plant by its vine-like growth, and leaves up to 2 inches long, shaped like arrowheads. Orach species are entirely restricted to salty soils and are thus one of a few plants that provide food in these habitats.

Edible Parts: All of the plant is edible and tasty. The seeds are a good source of starch.

Preparation: Eat orach raw or boiled.

23. Common Name: Purslane

Scientific Name: Portulaca oleracea Click here for Portulaca oleracea Images

Description: Purslane grows close to the ground, seldom more than a few inches tall. The stems and leaves are fleshy and often tinged with red. Leaves are paddle-shaped and 1 inch or less long and are clustered at the tips of the short stems. Flowers are yellow or pink. The seeds are tiny, black and produced in large numbers. Look for it in cultivated fields, field margins and other weedy areas in full sun.

Edible Parts: All parts of the plant are edible and are rich in vitamins. In the Nile valley and the Middle East this plant is grown as a crop known as rigla in Arabic.

Preparation: Boil the plants after washing for a tasty vegetable or eat the plant raw. The seeds can be used as a flour substitute or eaten plain.

24. Common Name: Oaks

Scientific Name: Quercus species Click here for Quercus species Images

Description: These are familiar deciduous or evergreen trees with alternate leaves and acorn fruits. There are two main groups of oaks--red and white. The red oak group has leaves with bristles and smooth bark in the upper part of the tree, acorns take two years to mature; white oak leaves lack bristles, have rough bark in the upper portion of the tree, and acorns that mature in only one year. Oaks are found in a diversity of habitats; they often are the most abundant trees in the forest.

Edible Parts: All acorns are edible but often contain large quantities of bitter substances. The white oak acorns are generally better in flavor than those of the red oak group. The live oak, Q. virginiana, has especially tasty acorns.

Preparation: Gather the acorns and shell them. For the red oaks, you will need to soak the acorns in water for one or two days to remove the very bitter substances that characterize the acorns of the red oak group. Or, to speed up the process, soak the acorns in water to which some wood ashes have been added. The acorns can be eaten or boiled or ground into flour or baked. Acorns which have been baked until very dark can be used as a coffee substitute.

25. Common Name: Pines

Scientific Name: Pinus species Click here for Pinus species Images

Description: Pines are easily recognized. The leaves are needle-like and grouped in bundles. Each bundle may contain 1-5 needles, the number varies among species. The odor and sticky sap of the tree are a simple way to determine its identity. This will readily distinguish pines from very similar looking trees with needle- like leaves. Pines prefer open sunny areas.

Edible Parts: The seeds of all species are edible but some are very small. The young male cones, borne only in the spring of the year, can be collected as a survival food. Young cones with no tinge of yellow, indicating pollen, are best although they are edible at any stage. The bark of younger twigs is edible. In my opinion, Pinus strobus (white pine) Click here for Pinus strobus Images has the most tasty young twigs--the pine with the least turpentine-like taste.

Preparation: Boil or bake the young cones. Peel off the bark of thin twigs. The juicy inner bark can be chewed and is rich in sugar and vitamins, especially in the spring when the sap is rising.

26. Common Name: Juniper

Scientific Name: Juniperus species Click here for Juniperus species Images

Description: Junipers, sometimes called cedars, are trees or shrubs with very small scale-like leaves which are densely crowded around the branches. Each leaf is less than 1/2 inch long. All species have a distinct aroma resembling the well-known cedar. The berry-like cones are usually blue and covered with a whitish wax. Look for them in open, dry sunny habitats.

Edible Parts: The berries and twigs of the juniper are a source of survival food.

Preparation: The juniper berries can be prepared in several ways. Eat them raw or roast the seeds for a coffee substitute. The dried and crushed berries are used as a seasoning for meat, especially wild game. Gather the young twigs to make a tea. Boil for a few minutes, then drink. This tea is rich in vitamin C.

CAUTION!! Many plants are called cedars which may be no relation and which could be harmful. Always look for the berry-like structures, needle leaves, and resinous fragrant sap to determine that the plant you have is a juniper.

27. Common Name: Foxtail grass

Scientific Name: Setaria species Click here for Setaria species Images

Description: Foxtail grasses are of various sizes with dense furry heads. They prefer open, sunny areas and you can find them along roads and paths, margins of fields, and around homesites. Some species occur only in wet marshy areas; some are grown as crops.

Edible Parts: The grains are a valuable source of emergency food.

Preparation: Harvest the small grey or brown grains from the grain heads. They may be eaten raw or cooked, but the taste is improved by removing as much of the covering of the grain as possible.

You can do this by grinding or simply rubbing them in your hand.

28. Common Name: Nettle

Scientific Name:Urtica dioica Click here for Urtica dioica Images

Description: These plants grow to a height of several feet. Leaves are opposite and usually toothed. The flowers are small and inconspicuous. Nettles prefer moist areas along streams or at the margins of forests.

Edible Parts: The young shoots of nettles are a good source of food. I believe there are one of the best wild edibles. Nettles also have the peculiar quality of curdling milk.

Preparation: Boil the young shoots and eat as a vegetable. To make a yogurt, simply crush some of the plant and place it in milk.

CAUTION!! These are stinging plants! However, their effect is NOT like that of poison ivy and is only temporary.

Other Uses: Nettles can also be a source of weaving material. In order to use them for this purpose, the stems must be crushed and kept in water until all but the strong, long fibers are rotted. These are then removed, washed and dried.

29. Common Name: Wild rices

Scientific Name: Wild Rice Zizania aquatica Click here for Zizania aquatica Images and Southern wild rice, Zizaniopsis miliacea Click here for Zizaniopsis miliacea Images

Description: This is a tall grass up to 15 feet. The grain is the edible part of the plant, and is dark brown or blackish when ripe. Wild rice grows only in very wet areas where it may form dense stands.

Edible Parts: The grain is very nutritious

Preparation: Beat the grain off the plant and eat raw or cooked.


4-TEAS

Just about any non-poisonous plant can be made into a "tea." The following are a few native plants of the Tidewater region which can be made into pleasant testing teas. Collect young and tender leaves and allow to dry until crunchy. In general, it is necessary to use about two teaspoons of dried leaves per cup of tea. Of course, this may vary with taste and time of year the leaves are collected. Allow the tea to steep for at least one hour. Unused leaves may be stored indefinitely in a closed jar or tin.

1. Yaupon (Ilex vomitoria). Click here for Ilex vomitoria Images A very common shrub in the Tidewater area and all along the South Atlantic Coast. The young leaves turn black upon drying.Yaupon tea has a robust, distinct flavor- perhaps the closest to black tea.Another species of Ilex (I. paraguarinesis), called maté in Spanish, is a popular drink produced commercially in South America. We will sample both in class.

2. Persimmon (Diospyros virginiana). Click here for Diospyros virginiana Images The persimmon tree provides the makings of many foodstuffs ranging from simmon pudding to simmon beer. The leaves are used to make a tea and are reported to have a high vitamin C content. The taste resembles sassafras.

3. Wild strawberry (Fragaria virginiana). Click here for Fragaria virginiana ImagesPrepare as above. This is a pleasant tasting ea.

4. New Jersey tea (Ceanothus americanus). Click here for Ceanothus americanus Images According to tradition, this tea was in great demand during the American Revolution. It takes a large quantity of leaves to make the tea. Steep for at least one hour.


Musselman's Choices

After years of eating wild edibles, I have come to the following conclusions about being lost in the woods. First, climb a tall tree and look for the Golden Arches. Eating most of these things is ghastly and you are guaranteed to lose weight fast! Second, if time allows, look for a good BBQ place using the important key characters of unpaved parking lot, pickup trucks in the lot (70% or more should have gun racks), tile floor (no rug), and plastic dishes.

BUT! If you want to eat some wild plants, I recommend the following based on the preceding list, there are others that are more tasty but have limited distribution or are difficult to identify or are seasonal. These are plants I actually collect and eat.

Cattails are a good choice and they are tasty. The young shoots can be sauteed or, used raw in a salad. They have the taste and texture of palm hearts but are a better choice because harvest of palm hearts kills the palm tree.

Nettles. I consider these the finest wild greens but Urtica dioica is not common in Tidewater Virginia.

Live oak acorns. Unlike many acorns, these actually taste good! However, they are only produced in large quantities in mast years. They can be eaten raw. I suppose they can be cooked but I don't see the advantage considering the excellent taste.

Claytonia tubers. These taste like potatoes. When you find a large population, it only takes a few minutes to collect enough for a meal.

Teas. None of these excite me. The best of the bad lot is yaupon.


FOOTNOTES

1. From: Old Dominion University Courier 28(4): 4. 1998.

2. Reprinted by permission from: Krenzelok, E. P. 1994. Mushroom poisoning. Is there really high morbidity and mortality? Clinical Toxicology Forum 6(4): 1,2,5. I have added footnotes and items in brackets

3. University of California Berkeley Wellness Letter, May 1995

2583 Visitors to this page since 08/26/2001


Biology 319

Home

Syllabus

Written Evaluations

Botany Bus