Mission

To be the leader in research, development, and education, concentrating on laser and plasma applications and advanced materials.

Working to Innovate

What we are doing:

- Nanotechnology/quantum dots
- Thin films
- Materials characterization
- > Laser micromachining
- Advanced sensors
- Ultrafast laser diagnostics
- > Nanotechnology for lab-on-a-chip applications
- > Electronic materials
- High-k dielectrics
- > Alternative renewable energy and bioapplications
- Electron beam lithography
- > VUV lithography
- > Solar cells and photodetectors
- Negative electron affinity photocathodes
- Laser induced breakdown spectroscopy
- > Femtosecond laser technology
- Carbon nanotubes and nanoparticles
- Surface modification with plasmas

Dr. Hani E. Elsayed-Ali, Director

Applied Research Center
Batten College of Engineering & Technology
Old Dominion University
12050 Jefferson Avenue Suite 721
Newport News, Virginia 23606
Phone: (757) 269-5643
Fax: (757) 269-5644

E-mail: helsayed@odu.edu https://www.odu.edu/eng/research/enterprise-centers/arg

Faculty

Dr. Hani E. Elsayed-Ali

Professor, Department of Electrical & Computer Engineering,

Director, ODU Applied Research Center

Ultrafast laser-based measurements; laser processing, thin film and nanocrystal fabrication; pulsed laser deposition; semiconductor surface preparation and characterization; electron emitters and electron gun design; and thin film and laser-based sensors

Dr. Helmut Baumgart Professor, Department of Electrical & Computer Engineering

Nanotechnology; microelectronics fabrication; high-k dielectrics for advanced gate stack engineering; atomic layer deposition (ALD) technology of electronic thin film materials; semiconductor device processing; thin film growth; ALD of ZnO for detector and sensor applications

Dr. Abdelmageed Elmustafa Professor, Department of Mechanical & Aerospace Engineering

Nanoscale mechanical behavior of materials; nanoindentation (metals, polymers, alloys, interconnects); dislocation and strain gradient plasticity; thin films (mechanical properties and characterization); modeling and simulation (nanoindentation creep and contact mechanics); RF accelerators breakdown

Dr. Sylvain Marsillac Professor, Department of Electrical & Computer Engineering

Solar cells, new inorganic materials for renewable energy applications, innovative tools for in-situ and real-time analysis, novel architectures and techniques for the fabrication of flexible and high efficiency solar cells, materials characterization

Dr. Gon Namkoong Professor, Department of Electrical & Computer Engineering

Development of nitride/ZnO-based materials and devices on innovative substrate materials as well as applying new growth techniques to facilitate material and device improvements; development of organic, hybrid organic-inorganic, inorganic solar cells

Α

P

P

E

 \mathbf{D}

R

E

E

R

H

R

NANOTECHNOLOGY

THIN FILM DEPOSITION

MATERIALS CHARACTERIZATION

Applied Research Center Batten College of Engineering & Technology Old Dominion University 12050 Jefferson Avenue Suite 721 Newport News, Virginia 23606 (757) 269-5643

In the Laboratory

ARC has established 18 labs with equipment and facilities valued in excess of \$6 million.

MATERIALS FABRICATION & PROCESSING

- Atomic layer deposition (ALD)
- RF/DC sputtering
- Pulsed laser deposition (PLD)
- E-beam evaporation
- Thermal evaporation
- Sol-gel
- Spin coating
- Multicharged ion (MCI) system for ion implantation
- Electron beam lithography (EBL)
- Photolithography
- Rapid thermal processing (RTP)
- Reactive ion etching (RIE)
- · Laser micromachining
- Laser surface treatment
- Laser/materials interaction

MATERIALS CHARACTERIZATION

- High resolution transmission electron microscope (HRTEM)
- Scanning electron microscope (SEM)
- Energy dispersive spectroscopy (EDS)
- Atomic force microscope (AFM)
- Scanning tunneling microscope (STM)
- X-ray diffraction (XRD)
- Nanoindentation
- Lifetime fluorescence spectroscopy
- UV-Vis spectroscopy
- Probe station for electrical device testing & semiconductor device analyzer
- Optical microscope
- Time-resolved electron diffraction
- Reflection high-energy electron diffraction (RHEED)

LASERS

- Femtosecond Ti:sapphire laser
- · Q-switched Nd:YAG laser
- Excimer laser

Fabrication and Analysis

Laser MCI system

InPon GaAs (100) by PLD

1.00 um

Atomic layer deposition (ALD)

Excimer laser

JEOL JSM-6060LV SEM

HfO₂ tube-in-tube structure by ALD

AJA ATC Orion 5 RF/DC Sputtering System

Triangular Ag nanoparticle fabricated by EBL

UHV femtosecond laser PLD system with RHEED

Nanoindenter XP from MTS

A triangular Berkovich diamond tip impression

Probe station and Agilent B1500A semiconductor device analyzer

Atomic force microscope (AFM)

JEOL JEM-2100F field emission HRTEM

Au nanoparticle

BN nanotubes

