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Abstract—The millimeter wave (mmWave) frequency band is a promis-

ing candidate for next generation cellular and wireless networks. To

compensate the significantly higher path loss due to the higher fre-

quency, the mmWave band usually uses the beamforming technology.

However, this makes the network topology control a great challenge. In

this paper, we propose a novel framework for network topology control

in mmWave networks, termed Beamforming Oriented tOpology coNtrol

(BOON). The objective is to reduce total transmit power of base stations

and interference between beams. BOON smartly groups nearby user

equipment into clusters, constructs sets from user equipment clusters,

and associates user equipment to base stations and beams. We com-

pare BOON with three existing topology control schemes in terms of

transmit power, network sum rate, signal to interference and noise ratio,

and computation complexity. The results indicate that overall BOON sig-

nificantly outperforms them. In particular, on average BOON uses only

10%, 32%, and 25% transmit power of other three schemes, respectively,

to achieve the same network sum rate.

Index Terms—mmWave networks, topology control, clustering, set cov-

ering.

1 INTRODUCTION

In recent years we have witnessed remarkable proliferation
of intelligent wireless devices. For instance, by the Inter-
net of Things (IoT) forecast of Ericsson, there will be 29
billion IoT devices by 2022 [1]. At the same time, mobile
broadband services such as HD video streaming and vir-
tual/augmented reality will continue driving the demand
for higher data rates. Such phenomenal growth demands
significant higher wireless system capacity. To dramatically
increase system capacity, more spectrum needs to be pressed
into service. This is because while the wireless spectrum
efficiency has improved continuously, such advances cannot
meet the requirement for drastic growth in wireless capacity.
Today’s wireless systems mainly operate in the sub-6 GHz
microwave spectrum, which is experiencing severe short-
age and has become a precious resource. To this end, the
millimeter wave (mmWave) band, operating at frequencies
between 20 and 300 GHz, has been identified as a promising
candidate for next generation cellular systems (5G) and
WiFi networks (IEEE 802.11ad) [2]–[7]. The massively un-
derutilized spectrum at the mmWave band provides a great
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potential to support user data rates of multi-gigabit per
second and a thousand-fold increase in system capacity.

While the use of mmWave band addresses the strong
demand for wireless spectrum, it brings new technical
challenges. The much higher frequency of the mmWave
band results in about 20 − 25 dB higher path loss than
today’s cellular bands [3], [4]. To overcome this problem,
beamforming is adopted where an antenna array is used
to generate sharp beams to achieve high signal gain at
receivers, by controlling the amplitudes and phases of the
signals transmitted (or received) at each element. While it
can significantly increase the reach of base stations (BSs),
beamforming raises a great challenge to form topology in
mmWave networks, in particular for multi-BS mmWave
networks. This is because we have to design beams to cover
all user equipment (UE) while avoiding strong interference to
each UE from other beams of the same BS or different BSs.
This results in a joint beamforming optimization problem
among BSs, including UE association among BSs and inter-
beam and inter-BS interference reduction. This problem is
fundamentally challenging. Without a careful design, the
system performance such as the sum rate can be poor while
consuming significant resource such as transmit power.

In this paper, topology control is referred to as a frame-
work of user equipment (UE) association, discovery of the
number of beams for each BS and UE coverage by each
beam, and multi-BS beamforming in a mmWave network. In
traditional cellular networks, the omnidirectional antenna
is used and the coverage of a BS is a circular area (cell)
based on the communication range of the BS. The topology
control is thus straightforward, since it is easy to determine
the preferred BS for a UE as well as the preferred UEs
for a BS. Unlike traditional cellular networks, a cell or the
coverage area of a BS in mmWave networks is complicated
and usually has an irregular shape. The coverage area of
a BS is essentially the area covered by the beams formed
by the BS. The network connection between a BS and a UE
relies on whether there is a beam from the BS to cover the
UE, rather than the distance between them. On the other
hand, where and how to form beams depend on a number
of factors such as the UE spatial distribution, interference
between beams, power budget, etc. Hence, topology control
in mmWave networks is fundamentally challenging.

A straightforward approach to form network topology
for mmWave networks is to construct a beam to each UE
through multi-user beamforming (MUB) [8], [9]. However,
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Fig. 1. Average SINR of two UEs as a function of their angular separation
relative to the BS

forming one beam for each UE can result in significant
interference between nearby UEs, thus degrading system
performance such as the signal to interference and noise ratio
(SINR) at the UEs. Furthermore, each beam needs a radio
frequency (RF) chain or beamformer, which is prohibitively
costly or impossible in large scale mmWave networks. An-
other straightforward approach for topology control is to
construct one beam to cover all UEs associated with a BS,
through multicast beamforming (MCB) [10]–[12]. However,
this approach cannot form sharp beams, resulting in waste-
ful energy consumption. Fig. 1 illustrates the average SINR
of two UEs of a BS as a function of their separation angle un-
der MUB and MCB. The transmit power is 4 watt, the UE-BS
distance is 100 meters, and the number of antenna elements
is 16. Clearly, for MUB, a large separation angle results in
a good SINR, while a small separation angle results in a
poor SINR, due to the strong interference between the two
beams. In contrast, for MCB, a small separation angle results
in a good SINR, while a large separation angle results in a
poor SINR, because beams are not formed to concentrate
power on UEs.

In this paper, we propose a framework for topology
control in mmWave networks, termed Beamforming Ori-
ented tOpology coNtrol (BOON), to combine the benefits of
MUB and MCB based topology control approaches. BOON
smartly clusters UEs into groups and form beams based on
the groups. Thus, nearby UEs are covered using the same
beam to avoid interference, while UEs sufficiently sepa-
rated, i.e., from different groups, are covered by different
beams, to avoid wasteful energy consumption. Furthermore,
BOON smartly associates UEs to different BSs and beams,
and finds appropriate beamforming vectors for all BSs and
beams, with the objective to reduce the interference between
BSs and beams. The objective of BOON is to reduce the
total transmit power. BOON can significantly reduce mutual
interference between nearby UEs and between BSs, resulting
in lower power consumption, and reduce system cost by
using significantly fewer beams, compared with the MUB
based topology control. On the other hand, it can form sharp
beams to focus energy on the UEs to reduce power con-
sumption, compared with the MCB based topology control.

There have been several studies on topology control or
UE selection in MIMO systems in the literature. In [8], the
authors proposed a UE selection method based on channel
orthogonality between different UEs, to select a group of
UEs with orthogonal channel vectors, which are then served
using the MUB scheme. In [9], the authors proposed a user

selection scheme to maximize the harmonic sum of UE
SINR, which prioritizes cell-edge users to increase through-
put, where a UE can receive multiple spatial streams from
different BSs. In [13], UEs are partitioned into UE groups,
with each group having similar channel covariances. All
UEs in a group are served simultaneously using one pre-
coding vector through an MCB scheme. In [14], the authors
studied a simpler beamforming scheme called switched
beamforming. In [15]–[18], the UEs with uncorrelated or
orthogonal channels are grouped together, and then served
using the MUB scheme. In [19], [20], a BS forms a beam in
a random direction, which can cover UEs in that direction.
Most of those works focused on beamforming with one BS,
while the UE association among multiple BSs assumed a
simple scheme based on the strongest received signal power.
In this paper, we not only consider UE selection for a single
BS, but also aim to optimize UE association among BSs,
with the objective to reduce interference between beams of
different BSs.

Our contributions are summarized below.

• We develop a beamforming oriented UE clustering
algorithm to group UEs, with the objective to reduce
transmit power and interference between beams.

• We devise a set construction scheme and an inter-
ference aware set covering algorithm that addresses
the unique challenges in beamforming to smartly
associate UEs to beams and BSs, with the objective
to reduce interference between beams.

• We design an approach to form beams for all BSs
with the objective to reduce the total transmit power
and inter-BS interference, subject to coverage of all
UEs and meeting a minimum quality of service.

The rest of the paper is organized as follows. Section 2
presents an overview of BOON. Section 3 describes the
system model. The BOON framework is presented in Sec-
tion 4. Section 5 presents performance evaluation. Section 6
concludes the paper and discusses future directions.

2 BOON OVERVIEW

BSs are deployed by wireless operators and are generally
connected to a cloud or a backend management system,
through either wired or wireless backhaul connections.
Hence, the BSs information, including locations, the number
of antennas, etc., is known to the network operator. We
assume a low mobility UE network where the updating of
UE locations at the BS or the cloud can be at the order of
seconds. For a walking speed mobile UE, the channel fading
characteristics remain unchanged for several seconds [13],
[14]. This means UE tracking can be done at a slow rate.
The message exchange delay is expected to be small, e.g., in
the order of 1 millisecond in 5G networks. In a low mobility
network, the BOON algorithm can be re-run at a frequency
in the order of seconds. Both the message exchange delay
and running time of BOON are acceptable compared with
such an interval. On the other hand, mmWave networks are
not well suited for high mobility UE networks [13]. This
is because the Doppler shift in wireless channels increases
linearly with the carrier frequency and UE mobility, and
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the expected angular spread of UE signals at the BS is also
higher in mmWave frequency [6], [13].

In general, there are two approaches for a BS to discover
UEs. The first approach is to utilize beam sweeping [21],
[22]. Each BS transmits initial signals in random directions
to sweep the whole angular space, to discover UEs. This
approach has a lower system cost, but may result in a large
delay. The second approach utilizes co-existing macrocells
for UE discovery, e.g., LTE towers, to achieve low delay
[23]. Given that major cellular operators all have deployed
LTE systems, this approach is a feasible solution. Both LTE
towers and mmWave BSs are connected to a cloud. The
mmWave system off-loads data transport, while the LTE
system is used for control and data transport for UEs that
cannot be covered by mmWave BSs. The discovery of UE
locations results in some overhead. Nevertheless, this over-
head is not significant, as the message exchange between
LTE towers and UEs is fast.

Through UE discovery, the UEs information, including
locations, the angle of arrival (AoA) of UE signals, etc., is also
known to the mmWave network operator. BOON resides
in the cloud of the operator to coordinate topology control
among BSs and UEs. It finds the optimal number of beams
for each BS, assigns UEs to be covered by each beam, and
computes the beamforming vectors for all beams. The ob-
jective is to reduce the total transmit power and interference
between beams and between BSs, while covering all UEs
and meeting a minimum quality of service. As illustrated in
Fig. 2, there are four components in BOON: 1) beamforming
oriented UE clustering (BOC), 2) cluster decomposition based set
construction (CDSC), 3) interference aware set covering (IASC),
and 4) multi-BS beamforming. BOC carries out fine granular-
ity UE clustering for each BS among all UEs that can be
reached through beamforming by the BS. Both the angles
of UEs relative to the BS and the distance between UEs are
considered in the clustering similarity metric. CDSC decom-
poses each cluster formed by BOC into a list of overlapping
sets, which can be viewed as a list of overlapping sectors,
starting from a BS outward. IASC addresses the unique
challenges in beamforming and solves a weighted set covering
problem to select a list of sets among all sets constructed
by CDSC, to jointly cover all UEs, with the objective to
reduce interference between beams and between BSs. The
resulted sets from IASC determine the UE association and
BS beam coverage. At last, one beam is formed for each
set selected by IASC, with the objective to reduce the total
transmit power of all BSs. The BOC algorithm can be run
either distributedly at each BS, or at the cloud. The CDSC,
IASC, and beamforming can be centrally run at the cloud.
However, they can also be implemented in a distributed
mode by exchanging the UE clustering information between
BSs.

3 SYSTEM MODEL

In this section, we describe the system model for BOON,
including mmWave channel modeling, transmit power com-
putation, and UE downlink data rate computation. Table 1
lists major notations used in this section.

Blockage

BS UE

Clustering (BOC)

Set covering (IASC)

and Beamforming

(a)

(c)(d)

A

B

(b)

Set construction

(CDSC)

Set

Cluster intersection area

Fig. 2. BOON: (a) UE clustering through the BOC algorithm, (b) set
construction (CDSC), (c) set covering to optimally select UE-BS associ-
ation and select sets for beamforming through the IASC algorithm, (d)
beamforming for all BSs based on the selected sets.

TABLE 1
Major notations

m,n, k index for BS, UE and beam, respectively
B,U , C,B set of BSs, UEs, beams, and UE-clusters,

respectively
〈m, k〉 the k-th beam of the m-th BS
θmn,aθmn

angle of arrival of UE n signal at BS
m array and the corresponding steering
vector, respectively

hmn channel gain vector between BS m and
UE n

wmk beamforming weight vector of beam
〈m, k〉

φhp

mk
half power beamwidth of beam 〈m, k〉

pt
mk

transmit power of beam 〈m, k〉
pr
n,m,k

received power at UE n from beam
〈m, k〉

K maximum number of beamformers at a
BS

In,m,k , rn,m,k , γn,m,k interference, rate, and SINR at UE n
when it is served by beam 〈m, k〉

γo minimum required SINR for UEs

3.1 mmWave Channel

Let U , B and Cm be the set of UEs, BSs, and beams of BS
m (m ∈ B), respectively. Let Um ⊂ U be the set of UEs that
can be covered by BS m, with the maximum range decided
by a beam with the minimum beamwidth and maximum BS
transmit power. Throughout the paper, we assume each BS
is equipped with an antenna array with L antenna elements,
and each UE has a single antenna. Note that BOON can be
extended to accommodate UEs with multiple antennas.

Let K be the number of beamformers for each BS. Each
beamformer can form one beam. Note that the required
processing power, design complexity and fabrication cost
of a BS grows with the number of beamformers; hence a BS
can only have a limited number of beamformers. For each
beam k ∈ Cm, let Umk ⊆ Um be the set of UEs that are
inside beam k of BS m, called as beam 〈m, k〉.

Many works on mmWave channel modeling consider
both LOS and non-line-of-sight (NLOS) paths [2]–[4], [13],
[24]. Nevertheless, multiple channel measurement experi-
ments on mmWave frequency showed that the LOS path
dominates the NLOS paths. For instance, the NLOS path
gain is typically 20 dB weaker than the LOS path gain [20],
[24]–[26] and the NLOS path exponent was found as large as
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5.76 in downtown New York City [2]. In this paper, we focus
on the LOS paths to streamline the algorithm development.
We will extend our approach to address NLOS paths in our
future work.

Let dmn and ρmn denote the distance, and average LOS
path loss, respectively, between BS m and UE n. Note that
ρmn is often modeled as proportional to d−η

mn, where η is
the path loss exponent of the LOS path. Also let θmn be
the normalized direction of the LOS path to reach UE n
from BS m, as illustrated in Fig. 3, and αmn be the complex
gain of the LOS path which is modeled using a complex
Gaussian distribution, i.e., α ∼ CN (0, 1). Now the channel
vector between the m-th BS with L antennas and the n-th
UE (n ∈ Umk) with a single antenna is given as [19], [20],
[24]

hmn =

√

L

ρmn

αmnaθmn
, (1)

where aθ is the response vector of the BS antenna array for
the signal path in the θ direction. The response vector for a
uniform linear array (ULA) at a BS is expressed as [19], [20],
[24]

aθ =
1√
L

[

1, e−jπθ, . . . e−jπ(L−1)θ
]T

, (2)

where (•)T denotes transpose of a vector. Note that the nor-
malized direction θ is a function of the physical angle of de-
parture of the BS antenna array, denoted by φ ∈ [−π/2, π/2],
as θ = 2∆sin(φ)

λ
, where λ is the channel frequency wave-

length and ∆ is the spacing between two adjacent antenna
elements in a ULA. Concatenated channel matrix formed by
all UEs in BS m is therefore written as

Hm = [hm1,hm2, . . . ,hmn] , n ∈ Um (3)

The received signals in all UEs under BS m is given by

Ym = HH
mWmxm + z, (4)

where (•)H denotes the complex conjugate transpose, xm ∈
C
|Um|×1 is the vector of transmitted signals for UEs in BS

m, z ∈ C
|Um|×1 is the vector of Additive White Gaus-

sian Noise (AWGN) with zero mean and unit variance,
Wm ∈ C

L×|Cm| is the beamforming weight matrix formed
by concatenating weight vectors, w ∈ C

L×1, in BS m, i.e.,
Wm =

[

wm1,wm2, . . . ,wm|Cm|

]

.

3.2 Downlink Transmit Power

In BOON, each BS constructs a set of unit-power beams,
denoted by {wm1, . . . ,wm|Cm|}, i.e., the power in each
beam ||w||2 = 1. As illustrated in Fig. 3, each beam serves

a group of UEs. Let θ̂mk denotes the main lobe direction
(boresight angle) of the beam 〈m, k〉 formed by wmk to serve
all UEs in Umk. The effective channel gain of UE n ∈ Umk

from beam 〈m, k〉 can be written as [19], [20]

|hH
mnwmk|2 ≈

|αmn|2
ρmn

FL(θ̂mk − θmn), (5)

where (•)H denotes the complex conjugate transpose, αmn

is the complex gain of the LOS path between BS m and UE
n, ρmn is the average LOS path loss between BS m and UE

Boresight 

direction

ULA array axis

Main lobe

Minor lobes

 

 

Fig. 3. One beam to cover a group of nearby UEs. θ̂mk and θmn

denote the boresight direction of beam 〈m, k〉 and the direction of UE n,
respectively.

n, and FL(x) is the Fejér kernel [19]. If (θ̂mk − θmn) → 0,
the UE channel gain is at maximum.

Let ptmk be the transmit power of beam 〈m, k〉. The
received signal power at UE n from beam 〈m, k〉, denoted
as prn,m,k, is written as

prn,m,k = ptmk|hH
mnwmk|2, ∀n ∈ Umk. (6)

Let In,m,k denote the total interference at UE n from all
beams, if it is covered by beam 〈m, k〉. Let σ2 be the thermal
noise at a UE, which is modeled as σ2 = No+10log(w)+NF,
where w is the system bandwidth, No is the noise power
spectral density and NF denotes the noise figure at the UE
receiver. The SINR at UE n from beam 〈m, k〉 is written as

γn,m,k =
prn,m,k

In,m,k + σ2
. (7)

To achieve a certain quality of service for the UE, the SINR
at the UE has to be greater than or equal to a minimum SINR
γo. Thus, we need to have

γn,m,k

γo
≥ 1, ∀n ∈ Umk. (8)

In order to maintain the minimum γ0 at all UEs in a beam,
the required transmit power ptmk is obtained using (6)-(8) as

ptmk ≥
(In,m,k + σ2)γo
|hH

mnwmk|2
, ∀n ∈ Umk. (9)

The transmit power vector for all beams of BS m is given by

pt
m =

[

ptm1, p
t
m2, . . . , p

t
m|Cm|

]

, (10)

where |x| denote the cardinality of set x. Our objective is to
reduce the total transmit power

∑

m∈B,i∈Cm

ptmi. (11)

3.3 Downlink UE Rate

The beam radiation patterns in the real world are compli-
cated. Fig. 4 depicts a network with 2 BSs and 4 beams,
with beam A transmitting to UE2, and beam B transmitting
to UE1 and UE3. While UE1 is covered by beam B, it may
receive intra-BS interference from beam A, e.g., if the null of
beam A is not perfectly aligned with UE1. UE3 has inter-BS
interference from beam D.
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Fig. 4. Inter-BS interference at UE3 and intra-BS interference at UE1

We quantify both intra-BS interference and inter-BS in-
terference for a UE. For UE n served by beam 〈m, k〉,
the total interference In,m,k is the summation of intra-BS
interference I ′n,m,k and inter-BS interference I ′′n,m,k given as
follows.

In,m,k = I ′n,m,k + I ′′n,m,k =
∑

i∈Cm\k

prn,m,i +
∑

j∈B\m

∑

l∈Cj

prn,j,l

=
∑

i∈Cm\k

ptmi|hH
mnwmi|2 +

∑

j∈B\m

∑

l∈Cj

ptjl|hH
jnwjl|2

(12)

In (12), the first term I ′n,m,k is the summation of powers
received by UE n from all beams in Cm except the serving
beam k. The second term I ′′n,m,k is the sum of powers
received from the beams of other BSs, i.e., except the serving
BS m. Note that we compute the received power for a UE
using (6).

The throughput capacity of the downlink channel has to
be shared among all UEs in a beam. UEs in the same beam
can use any multiplexing scheme to share resources, e.g.,
TDMA (time division multiple access), OFDMA (orthog-
onal frequency division multiple access), or NOMA (non-
orthogonal multiple access). In the ensuing discussions, we
assume the OFDMA system, but it can be similarly done for
NOMA and TDMA. In this paper, we assume a fair resource
allocation similar to LTE, i.e., the OFDM sub-carriers are
shared equally among UEs in a beam. If UE n is scheduled
in beam 〈m, k〉, the rate of UE n in each downlink frame is
given as

rn,m,k = wn log2(1 + γn,m,k), (13)

where wn is the sum of frequency spectrum from all down-
link sub-carriers assigned to UE n in the beam, and γn,m,k

is the corresponding SINR given by (7). If w is the total
system bandwidth, wn = w/|Umk|, where |Umk| denotes
the number of UEs in the beam 〈m, k〉. The sum rate of the
network is given as

∑

m∈B,1≤k≤K,n∈〈m,k〉

rn,m,k (14)

4 BEAMFORMING ORIENTED TOPOLOGY CON-

TROL (BOON)

Our objective for topology control is to reduce the total
transmit power in (11), subject to coverage of all UEs,
maintaining the minimum SINR at each UE by (9), and
using no more than the maximum number of beamformers

at each BS. Moreover, for a given transmit power that
meets those constraints, we aim to increase the sum rate
in (14). We take a heuristic approach to achieve these two
objectives. To reduce the transmit power, we first group
UEs together through a beamforming oriented UE clustering
(BOC) algorithm. This clustering is with regard to each BS
assuming the maximum range and the clusters are formed
with a radial shape with the center at a BS. The clusters of
different BSs may overlap with each other, i.e., some UEs
are included in clusters of different BSs. To associate those
overlapped UEs to the right BSs, we divide each cluster into
finer granularity sets through a cluster decomposition based set
construction (CDSC) algorithm. Next, we associate these sets
to the BSs through an interference aware set covering (IASC)
algorithm, which selects a list of sets that cover all UEs,
but do not overlap. Such UE/set association thus avoids
or reduces interference between BSs, which reduces the
transmit power of the BSs and increases the sum rate. At
last, one beam is formed to cover each set by its associated
BS. In the following, we describe each of those steps, which
form the four components of BOON.

4.1 Beamforming Oriented UE Clustering (BOC)

From the topology control perspective, clustering is a pro-
cess of organizing UEs into groups based on a similarity
or cost metric. Clustering is in general NP-hard [27]. In this
section, we develop a heuristic algorithm to find the number
of clusters and their UEs for a BS, with the objective to
reduce the transmit power of the BS. UEs are grouped based
on their angles relative to the BS and the UE-UE distance.

Algorithm 1 illustrates the BOC algorithm that itera-
tively clusters UEs for a BS. BOC is a heuristic greedy
algorithm which iteratively reduces the total clustering cost
in each successive stage. It starts with each UE as one cluster.
Two or more clusters are merged into one cluster in each
successive stage, until the number of clusters is up to the
number of beamformers K of a BS or the cost does not
decrease any more. The output is the optimal number of
clusters and UE set Umk in each cluster. In order to assess
if we should merge two clusters i and j into a new cluster
(i, j) in an iteration, we compute the cost metric for the new
cluster. The cost metric determines the performance of BOC.
In this paper, we use a cost metric based on energy efficiency
(EE) in bit/joule. EE measures the amount of downlink rate
that a beam can deliver with per unit energy in joule it
consumes. The clustering cost metric is the inverse of EE
since our goal is to reduce transmit power in the network.
Specifically, the cost of cluster (i, j) is defined as

c(i,j) =
pt(i,j)

∑

n∈U(i,j)
wn log2

(

1 +
pt
(i,j)

|hH
n w(i,j) |2

In,(i,j)+σ2

) , (15)

where pt(i,j) is the transmit power, In,(i,j) is the received
interference at UE n given by (12), and w(i,j) is the weight
vector.

While it is straightforward to consider all possible pairs
of clusters for merging, in practice the beamforming gain is
negligible when the main lobe is very wide. For instance, the
approximate beamforming gain is π2/(φhp)2, where φhp is
the solid angle for both the azimuth and elevation plane
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Algorithm 1: Beamforming oriented clustering (BOC)
for a BS

1 Input: UE set U and maximum number of beams K
2 Let each UE be a cluster, with the set of clusters
B = {{1}, {2}, . . .{|U|}}

3 Let v = K , and Let cost vectors c = 0 and c̄ = 0

4 while |B| ≥ v or
∑

c <
∑

c̄ do
5 B̄ ← B, c̄← c

6 if |B| = 1 then
7 break out of loop
8 end
9 For each cluster s and the next clusters k within

angle ϕ in the angular space, compute c(s,k) using
(15)

10 Select two clusters (i, j) = argmin
s,k

c(s,k)

11 Update B: create a new cluster h for B to replace
clusters i, j in B. If the beam to cover UEs in
cluster h also covers a UE in a different cluster (not
i or j), then merge that cluster into cluster h

12 Update c to be the cost vector of clusters in B
13 end
14 Output B̄ as the set of clusters

[28]. We choose a feasible value of ϕ such that beyond
which the UE channel gain is very small and beamforming
becomes inefficient. Hence, in line 8 of Algorithm 1, we
actually do not need to consider all possible pairs. Instead,
for a cluster, we only consider the next few clusters within
angle ϕ in the angular space for possible merging. At last,
we choose one pair to merge into one cluster which yields
the lowest cost.

A challenge for BOC is that the UE set in the merged
cluster (i, j) is not necessarily the combined UEs from clus-
ters i and j together. This is different from classic clustering.
Let U(i,j) denote the UE set of the new cluster (i, j). For
classic clustering, if an object x /∈ Ui and x /∈ Uj , then we
must have x /∈ U(i,j). However, in BOC, there may exist
a UE x such that x /∈ Ui and x /∈ Uj , but x ∈ U(i,j). As
an example, we consider three clusters (or beams) A, B,
and C, in the network illustrated in Fig. 4. Suppose clusters
A and C are selected to be merged. Then to avoid beams
overlapping, we have to let the new cluster (A,C) to serve
UE3, even though it is not in cluster A or C. Therefore, in
line 10, we check if a cluster in between needs to be merged
with clusters (i, j).

A benefit of the above cost metric is that it can help to
automatically find the optimal number of clusters, which
corresponds to the lowest clustering cost. There is a trade-
off between the number of UEs in a cluster and the total
number of clusters for a BS. More UEs in a cluster reduce the
spectral share per UE, which results in a higher clustering
cost. On the other hand, more clusters mean fewer UEs in a
cluster, which increases the UE spectral share. Nevertheless,
this in turn increases the interference between beams, also
resulting in a higher clustering cost. By ‘minimizing’ the
clustering cost, BOC automatically selects the optimal num-
ber of clusters. This is done through continuously merging
clusters even after the number of clusters reaches K , the

number of beamformers at a BS. The algorithm terminates
when the total cost

∑

c does not decrease anymore, i.e., the
clustering cost of the current iteration

∑

c is higher than the
one of the previous iteration

∑

c̄ in line 4.
If N UEs are distributed separately from each other in

the angular space with regards to the BS, such that the differ-
ence between two neighbor UEs is greater than ϕ, each UE
forms one cluster, where K is the number of beamformers
for the BS, and ϕ is the threshold for the main lobe width of
a beam. BOC only needs to compute the clustering cost for
each of the N UEs once. Thus, the time complexity is Θ(N).
However, in the worst case, BOC may need to run N − 1
iterations for merging clusters. In each iteration, BOC needs
to compute Θ(Nj) cost metrics, where Nj is the number of
clusters in the jth iteration, since for each cluster s, we only
need to consider the next few clusters, as discussed above.
Thus, the worst-case time complexity of BOC is O(N2).

4.2 Cluster Decomposition based Set Construction

(CDSC)

The BOC algorithm groups UEs into clusters for each BS
independently. In a multi-BS network, we cannot form
beams directly based on those clusters, because clusters
from different BSs can overlap with each other, which causes
significant inter-BS interference. Therefore, we develop a
cluster decomposition based set construction (CDSC) scheme to
decompose each cluster into a number of sets. The objective
is to avoid inter-BS interference for formed beams. For
instance, in Fig. 5(a), UE a can be covered by both BS1 and
BS2, and thus is clustered by both BS1 and BS2. If we form
beams directly based on clusters, the two beams interfere
each other. Through constructing sets as in Fig. 5(c) or (d),
we can let BS1 form a beam to cover set B, which then
eliminates interference between BS1 and BS2.

Different set construction schemes produce different
beams which result in different transmit power. A naive
approach is the exhaustive set construction (ESC). With ESC,
we start from the closest UE of a cluster in the radial di-
rection and contiguously construct one set per UE outward,
with each set being a true superset of the previous set. For
instance, suppose there are three UEs (1, 2, 3) in a cluster
for a BS, with UE 1 the closest, and UE 3 the farthest to
the BS. The ESC scheme constructs three sets from this
cluster, C = {1}, B = {1, 2}, and A = {1, 2, 3}. While
ESC is easy to be implemented, it may generate a large
number of sets, which results in a large running time for
set covering in the next step of BOON. Hence, we develop
another scheme, termed shrinkable set construction (SSC), to
reduce the number of sets generated by set construction.

Fig. 5 illustrates ESC and SSC with six UEs (a, b, c, d, e, f )
forming four clusters with four BSs. For each cluster of a
BS, we first identify the intersections between this cluster
and the clusters of other BSs, by looking at the common
UEs between them. Then the cluster is partitioned into
intersection areas and non-intersection areas, as illustrated
in Fig. 5(b). The intuition behind partitioning UEs into
intersection and non-intersection areas is that UEs in the
intersection areas can be associated with either BS, but UEs
in the non-intersection area can be associated with only one
BS. For example, in Fig. 5, UE a forms an intersection area
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and can be associated with either BS1 or BS2. UE d forms a
non-intersection area, and can be associated with BS1 only.
We group the UEs in an intersection area into an atomic set.
The UEs in a non-intersection area are also grouped into
an atomic set. For example, there are five atomic sets in
Fig. 5(b). Three atomic sets {a}, {b, c}, {e} are formed by
intersection areas and two atomic sets {d}, {f} are formed
by non-intersection areas. We then treat each atomic set
as a UE, and apply the ESC scheme to construct sets, as
illustrated in Fig. 5(c). Note that each set is constructed by
concatenating a sequence of contiguous atomic sets starting
from the one closest to the BS and going outward.

The intersection between clusters can be more compli-
cated than the case in Fig. 5. We illustrate three complicated
intersection cases: partial intersection, crossing intersection,
and overlapping intersection in Fig. 6. With partial intersec-
tion, we can extend the intersection area to become a full
intersection, illustrated by the extended dotted line in Fig.
6(a). This is done by letting the BS slightly increase the
transmit power to cover the UEs in the dotted line. The
scenario with crossing intersection is treated as the same as
full intersection. For the overlapping intersection with two
or more other BSs, as illustrated in Fig. 6(c), we start from
the intersection area closest to the BS, and let all UEs in this
area be an atomic set. We remove the overlapped part of
this intersection area with the next intersection area, and let
the remaining UEs in the next intersection area be the next
atomic set, as illustrated in Fig. 6(d).

The main idea of the SSC scheme is to remove some sets
formed by ESC to reduce the total number of sets, as illus-
trated in Fig. 5(d). This may significantly reduce the running
time of the set covering algorithm in the next section. First of
all, we define the concept ‘shrinkable’. A set Y is shrinkable
to its direct subset X , iff the atomic set s = Y \ X is
an intersection area. The core idea of SSC is that if Y is
shrinkable to X , then X can be removed, without affecting
the set covering result. We explain the intuition through an
example illustrated in Fig. 5. As discussed earlier, an atomic
set in a non-intersection area is covered by only one BS, but

an atomic set in an intersection area can be covered by more
than one BS. If the set covering algorithm (to be discussed
in the next section) first selects the outermost atomic set
{a} of set A to be covered by BS2, then for BS1, set A will
automatically shrink to set B. Hence, in the very beginning,
we do not need to have set B in the initial sets for the set
covering algorithm. That is, the set covering result does not
change even if we remove set B in the initial sets. On the
other hand, if the set covering algorithm selects atomic set
{e} in set C to be covered by BS4, then set C cannot shrink
to set D or E because the atomic set {d} in C has to be
covered by BS1. In summary, a set Y is shrinkable to its direct
subset X , iff the atomic set s = Y \X is an intersection area.
The following theorem states whether a set can be removed
before feeding the sets to the set covering algorithm.

Theorem 1. Consider a set Y and its direct subset X constructed
from the same cluster, i.e., Y \X contains only one atomic set. We
can remove X without affecting the set covering results, if any of
the following conditions are satisfied.

1) X is not shrinkable.
2) X is shrinkable, but Y is not shrinkable.

Proof. First of all, with condition 1, we must have that set
Y is shrinkable. It is not possible that both X and Y are
not shrinkable, based on the construction of beamforming
sets. This is because if this is the case, then the outmost
two atomic sets in set Y are both in non-intersection areas,
which is in conflict with the partitioning of a cluster into
intersection and non-intersection areas. We use an example
to illustrates X and Y . Consider sets B and C in Fig. 5(c),
which correspond to Y and X . Furthermore, let set Z denote
the set from another cluster that intersects with the outmost
atomic set of set Y . With set Y as shrinkable, if the set
covering algorithm selects set Z first (before selecting Y ), set
Y can shrink to set X . That is, even if set X was removed,
shrinking Y essentially re-creates set X , which could be
selected by the set covering algorithm later. Thus the set
covering is not affected even if set X was removed. On
the other hand, if the set covering algorithm selects set Y
first, we do not have to keep set X since set X would not
be selected anyway by the set covering algorithm, because
selecting set Y implies the UEs in set X are already covered.
Hence condition 1 is a sufficient condition to remove set X .

With condition 2, the outmost atomic set s in Y , where
s = Y \ X , is in a non-intersection area. Hence the UEs
in the atomic set s cannot be served by another BS. So the
BS that set Y belongs to has to cover atomic set s, which
implies that set Y is covered. This in turn implies set X
would not be selected by the set covering algorithm later
on. It is possible that if we do not remove set X , the set
covering algorithm may select set X before selecting set Y .
However, eventually the set covering algorithm has to select
set Y or its superset, to cover the atomic set s. Thus, set X
would be removed since its superset is selected. That is, we
can remove set X in the beginning, without affecting the set
covering result. �

4.3 Interference Aware Set Covering (IASC)

While set covering is a classic problem, the inter-beam
interference raises a great challenge to applying set covering
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Algorithm 2: Interference aware set covering (IASC)

1 Input: Set family F , set costs c(S), UE set U
2 C = ∅
3 while U 6= ∅ do
4 S = argminx∈F c(x)
5 Remove UEs of S from U
6 F ← F \ S
7 for each set x ∈ F do
8 if x shrinks when we remove S then
9 Remove all UE i ∈ x ∩ S from x and

update c(x)
10 end
11 end
12 Remove any set h in C if h ⊂ S
13 Add set S to C
14 end
15 return C

for beamforming. A major difference is that, in classic set
covering, the objects in the selected set in a given step are re-
moved from the remaining sets, which is a key technique to
optimize performance in classic set covering. Unfortunately,
IASC cannot use this technique, as removing UEs from the
remaining sets may cause strong interference in the later
beamforming stage. In fact, with IASC, there is only one
scenario where we can remove a UE from the remaining
sets. That is, if a remaining set is shrinkable, we can remove
a UE from it. This is because, when the set shrinks, the cost
of the remaining set is recalculated and updated. If it results
in a strong interference, the cost will be high. Hence this
shrunk set would be unlikely selected in the future steps of
set covering.

Algorithm 2 illustrates the IASC algorithm. Let Si denote
the ith SSC set after applying the CDSC scheme in BOON.
Note that

⋃

i Si = U . All SSC sets of all BSs are denoted
as F = {Si}. We use (15) to compute the cost for set
Si, denoted as c(Si). The objective of IASC is to find an
index subset J ⊆ {1, 2, . . . , |F|} such that

∑

i∈J c(Si) is
minimum, subject to

⋃

j∈J Sj = U . Initially, the algorithm
lets C be empty. IASC picks a set S with the minimum cost
in each iteration, and remove UEs of this set from U (note
that not from other remaining sets in F ). The selected set
S is then removed from F . Next, we check if any x ∈ F
is “shrinkable” if we remove UEs of S from x. If x can
“shrink”, we remove the common UEs in both S and x, i.e.,
x = x\S, and update the cost c(x). If x cannot shrink, we
do not remove any UE from x even though a UE is already
covered by S, based on earlier discussions. Next we check if
set S covers all UEs in a previously selected set h. If yes, we
remove set h from C. Finally S is added to C. The algorithm
outputs a list of sets with the minimal total cost, while all
UEs are covered by those sets. In summary, IASC tries to
reduce the overall network cost while minimizing the set
overlapping such that each UE is associated with one beam.

Set covering is an NP-hard problem. The IASC algorithm
is a heuristic greedy algorithm to solve the weighted set
covering problem. In each iteration, the time is mainly on
updating the set cost on line 7, which requires O(|F|) time.
The worst case run time of IASC is O(|U||F|).

4.4 Beamforming

We adopt the linearly constrained minimum variance (LCMV)
beamforming scheme [29, p.513]. It is able to constrain
the beamforming output to achieve a given gain in the
directions of intended UE signals while minimize the power
response toward UE directions in other beams and BSs.
To achieve a complex gain g∗ in the UE direction θ, the
beamforming weight vector is subject to aHθ w = g∗, where
a(•) is given by (2). Let Aθ = [aθ1 , . . . , aθk ] be the constraint
matrix for total k UEs of a BS, with AoAs θ1, . . . , θk, and
f be the k-dimension single column response vector. The

covariance of the k UE signals R = E
[

hhH
]

= L|α|2

ρ
AθA

H
θ ,

where h is the k UE channel vectors given in (1), L is
number of antenna elements in the BS, ρ is the path loss and
α is the complex gain of the signal. The LCMV beamforming
to minimize transmit power is formulated as

min{wHRw} such that AH
θ w = f . (16)

The solution of (16) is obtained as follows using the La-
grange multiplier method

w = R−1Aθ(A
H
θ R−1Aθ)

−1f . (17)

By clustering UEs into groups and choosing an appropriate
beamforming weight vector for each group, it is possible
to approximately eliminate or significantly reduce the inter-
beam interference. The time complexity of the LCMV beam-
forming in (17) is Θ(max(kL2, L2.373)) assuming L ≥ k,
where L2.373 is the matrix inverse time for an L×L matrix.

We use the channel vector hmn between BS m and UE
n in (1) to compute a beamforming weight vector w for
each set in C output by IASC, to serve all UEs in this set.
Let Ui denote the UEs contained in the ith set in C. Also
let mi denote the corresponding BS of set Ci, i.e., the ith
set in C. For each UE set Ui, we construct the constraint
matrix Aθ , the corresponding covariance matrix R, and the
response vector f . Then we use (17) to compute |C| number
of weight vectors w1, . . . ,w|C|, where wi is associated with
set Ci. Then using (9), the transmit power allocated to the
signal for set Ci is computed as

pti = max

(

(In + σ2)γo
|hH

mi,n
wi|2

)

, ∀n ∈ Ui, i ∈ C (18)

where hmi,n is the channel vector between BS mi and UE n,
γo is the required minimum SINR threshold for all UEs, and
σ2
n is the noise power in the AWGN channel for UE n. Note

that interference In in (18) is close to zero because IASC
finds the best sets of UEs to avoid interference. Furthermore,
the beamformer constraint and response vector are applied
to form null in the direction of UEs of other sets.

5 PERFORMANCE EVALUATION

We compare BOON with MUB, MCB based topology con-
trol, and a state-of-the-art scheme JSDM [13]. All schemes
use the same beamforming technique, LCMV. Note that
both MUB [8], [9], [20], [30] and MCB [10]–[12], [31] are
special cases of BOON. The former treats each UE as a set,
forming one dedicated beam for each UE, while the latter
treats all UEs in one set, i.e., forming one beam to serve
all UEs. In JSDM, UEs are partitioned into groups with
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Fig. 7. Average sum rate versus transmit power of 50 experiments: (a) spread UE distribution (b) grouped UE distribution, (c) dense UE distribution.
γ0 = 1 to 15 dB.

TABLE 2
Simulation parameters

Parameter Value

System operating frequency (GHz) 73
Network dimension (m2) [400× 200]
Number of antennas in ULA per BS 16
Adjacent antenna spacing ∆ in ULA λ/2
Maximum number of beamformers K per BS 10
System bandwidth (FDD duplex mode) (MHz) 500
LOS path loss exponent η 2.2
Minimum required SINR γo at UE (dB) 1 to 15
Noise power spectral density No (dBm/Hz) −174
Noise figure NF at UE receiver (dB) 6

approximately similar channel covariances. All UEs in a
group are served simultaneously using one beamforming
vector. We assume all BSs are configured with a ULA,
while each UE is equipped with a single antenna. The
OFDMA system is assumed for spectrum sharing among
UEs in a beam. We consider a frequency division duplex
(FDD) mode where 80% of the system bandwidth, i.e., 400
MHz, is used for downlink data signal transmission and
the rest 20% is used for control signal purpose. The system
parameters used in simulations are summarized in Table 2.
The performance metrics we use are the BS transmit power,
sum rate of all UEs, SINR, and computation complexity. The
sample networks are in a [400× 200] m2 outdoor area, with
6 BSs and 40 UEs. There are 10 blockages in four differ-
ent shapes, rectangle, square, hexagon, and pentagon. The
reference signal received power based UE association is used
in MUB, MCB, and JSDM. The BSs are evenly distributed
in the network area. UEs are distributed by three patterns;
spread, grouped, and dense. In the spread UE distribution,
UE locations are randomly distributed. In the grouped UE
distribution, 40 UEs form into 10 UE groups, each with
4 UEs. The center of each group is randomly generated,
and the 4 UE locations are randomly generated, but closely
located to the center. In the dense UE distribution, UEs form
into one to two groups around each BS. The group center
and UE locations are generated similarly as in the grouped
UE distribution.

We have generated 50 networks for each UE distribution

TABLE 3
Average required transmit power of BOON (in %) with respect to MUB,

MCB, and JSDM, to achieve the same average sum rate

UE Pattern Gbps vs. MUB vs. MCB vs. JSDM

Spread 31.2 15.08 % 2.71 % 50.37 %
Grouped 15.05 10.87 % 12.9 % 20.6 %

Dense 8.03 3.3 % 80.4 % 2.9 %

pattern, respectively. We record the average transmit power
and sum rate for each network. The required minimum
SINR γo varies in a range of 1 to 15 dB. In simulations, we
first find the transmit power for BOON to meet a minimum
SINR γo at every UE and record the corresponding sum rate.
Then we apply the same transmit power in MUB, MCB and
JSDM to find their SINR and sum rate. Fig. 7 illustrates the
scatter plot of the average sum rate versus transmit power for
50 networks/experiments in each UE distribution pattern,
using different seeds for simulations. Each data point in
the figure indicates the required transmit power for each
scheme to achieve a given sum rate. The average error bar
length (95% confidence interval) of BOON, MUB, MCB, and
JSDM is 2.3, 3.2, 3.5, and 4.8 dBW, respectively. They are not
plotted in the figure as the error bars of different schemes
overlap with each other significantly, which makes them
hard to be viewed. Overall, BOON significantly outperforms
other schemes, thanks to the effective BOC clustering, and
the IASC algorithm which smartly associates UEs to BSs
to avoid inter-BS interference. BOON not only uses less
transmit power, but also has a smaller error bar. In the dense
UE distribution, BOON performs similarly as MCB as it is
best to form one or two beams in this case. They perform
significantly better than MUB and JSDM, as the latter form
multiple beams even for one group, and results in significant
interference between UEs. In summary, BOON smartly adapts
to different UE distributions to achieve the best performance
in all scenarios. Other schemes cannot adapt to different UE
distributions, and thus perform well in certain scenarios, but
perform poorly in other scenarios.

In Table 3, we average the percentage transmit power
BOON uses in all experiments, compared with MUB, MCB,
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Fig. 8. Probability density distribution of the sum rate, (a) spread UE distribution, (b) grouped UE distribution, and (c) dense UE distribution, γ0 = 10
dB.
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Fig. 9. The mean SINR versus transmit power of 50 experiments, (a) spread UE distribution, (b) grouped UE distribution, and (c) dense UE
distribution. γ0 = 1 to 15 dB.

and JSDM, to achieve the same sum rate. On average, BOON
requires 10%, 32%, and 25% transmit power of MUB, MCB,
and JSDM, respectively, to achieve an average 0.45 Gbps
per UE rate. In other words, BOON achieves 90%, 68% and
75% gain in transmit power compared with MUB, MCB, and
JSDM, respectively.

Fig. 7 only gives the average result among 50 experi-
ments. Next we examine how spread the performance is
across experiments. Fig. 8 plots the probability density dis-
tribution (PDF) of the sum rate obtained from the results
of the 50 experiments for each UE distribution pattern,
when the required minimum SINR γo = 10 dB. The PDF
of the sum rates with different values of γo have similar
trends and are omitted due to the space limitation. From
Fig. 8, BOON not only achieves a higher average sum rate
than MUB, MCB and JSDM, which can be verified by Fig.
7, but also has a much narrower spread on the sum rate
overall. This indicates that for the 50 experiments, BOON
can achieve most sum rates close to the average sum rate.
In contrast, for JSDM and MUB, not only the average sum
rate is smaller, but also the sum rates are much more spread
out. This means that for some networks, their sum rates
are very poor, significantly smaller than the average, while
for some other networks, their sum rates are much higher

than the average. In other words, their performance highly
relies on the specific UE location distribution. This is another
demonstration that BOON smartly adapts to all network scenar-
ios or UE location distributions, to achieve a good performance
in all scenarios, while other schemes cannot adapt to different
network scenarios well. Note that although MCB also has a
relatively narrow spread, its sum rate is much lower than
BOON, except in the dense UE distribution pattern.

Fig. 9 plots the average value of the mean SINR of
the 50 experiments in each UE distribution pattern. BOON
clearly outperforms JSDM and MUB. The average error
bar length of BOON, MUB, MCB, and JSDM is 0.5, 3.8,
3.0, and 4.7 dB, respectively. They are not shown in the
figure due to significant overlapping, which makes it hard
to view them. Clearly BOON has a much smaller error bar
than other schemes, i.e., has a more stable performance for
different scenarios. On average, the SINR gain of BOON is
about 8 dB over JSDM, and about 20 dB over MUB. MCB
performs better than BOON on the UE SINR in the spread
UE distribution pattern. However, this is at the expense of
a lower sum rate, which can be seen from Fig. 7(a). This is
because all UEs of a BS share one beam. Although the SINR
is high, the spectral share per UE is small, and thus the sum
rate is not high. On the other hand, BOON smartly adapts

10



-10 -5 0 5 10 15 20 25

Mean SINR at UE (dB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 d

is
tr

ib
u

ti
o

n

BOON

MUB

MCB

JSDM

(a)

-20 -10 0 10 20

Mean SINR at UE (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 d

is
tr

ib
u

ti
o

n

BOON

MUB

MCB

JSDM

(b)

-30 -20 -10 0 10 20

Mean SINR at UE (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 d

is
tr

ib
u

ti
o

n

BOON

MUB

MCB

JSDM

(c)

Fig. 10. Probability density distribution of mean SINR, (a) spread UE distribution, (b) grouped UE distribution, and (c) dense UE distribution, γ0 = 10
dB.

to the UE distribution and determines the approximately
optimal number of beams to be formed by each BS. Thus,
even though the SINR is not as high as that of MCB, the
spatial reuse of the spectral resource results in a higher sum
rate for BOON compared with MCB.

The PDF of the mean SINR of all UEs for the 50 ex-
periments is illustrated in Fig. 10, with γo = 10 dB. The
PDF results of the mean SINR with different values of γo
have similar trends and hence are omitted due to the space
limitation. Similar to Fig. 8, overall the mean SINR of BOON
has a much smaller deviation from the average value than
other schemes. MCB has a higher SINR than BOON in the
spread UE distribution pattern, but it has a lower sum rate.
This is because MCB forms one beam per BS and avoids
the inter-beam interference in a BS. Thus it achieves a high
SINR. Nevertheless, the sum rate is the smallest as all UEs
share the same beam, and thus the spectral share for each
UE in a beam is small. MUB has the worst performance on
SINR because forming one beam per UE causes excessive
interference among beams.

Table 4 compares the computation complexity of BOON,
MUB, MCB, and JSDM, where L is the number of ele-
ments of the BS antenna, |U| is the total number of UEs,
|B| is the number of BSs, ki is the number of UEs for
BS i in MUB, MCB and JSDM, Gi is the number of UE
groups/beams for BS i in JSDM, qi and Qi are the number
UEs and beams for BS i in BOON, respectively. Note that
generally qi 6= ki and Qi 6= Gi since the UE association
and clustering of BOON and JSDM are different. The ki
is the same for MUB, MCB, and JSDM as they use the
same user association scheme, the reference signal received
power based UE association. The beamforming operation in
(16–17) of Section 4.4 has to be conducted for every beam
of each BS. Its time complexity is Θ(max(kL2, L2.373)),
where k is the total number of UEs for a BS. For MCB,
the time complexity is Θ(|U|L2) assuming the number of
UEs for each BS is larger than L0.373, which is 2.8, 3.6, 4.7
when L = 16, 32, 64, respectively. For MUB, the time com-
plexity is Θ(L2

∑

1≤i≤|B| k
2
i ). For JSDM, the UE grouping

based on channel covariance takes Θ(
∑

1≤i≤|B| k
2
i ) time

and the beamforming takes Θ(
∑

1≤i≤|B| kiL
2Gi) time. In

general, ki < L2Gi. Hence the time complexity of JSDM is
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Fig. 11. Average execution time of the experiments in each UE distribu-
tion: (a) spread UE, (b) grouped UE , (c) dense UE.

Θ(L2
∑

1≤i≤|B| kiGi). For BOON, the UE clustering takes

O(∑1≤i≤|B| q
2
i ) time. The set covering by the IASC algo-

rithm has a time complexity O(|U||F|). The time for CDSC
is small and dominated by the set covering time. The beam-
forming takes Θ(

∑

1≤i≤|B| qiL
2Qi) time. Again, generally

qi < L2Qi. Moreover, the set covering timeO(|U||F|) is typ-
ically smaller than Θ(

∑

1≤i≤|B| qiL
2Qi). Hence the BOON

time complexity is Θ(L2
∑

1≤i≤|B| qiQi). From Table 4, in
general the computation complexity of MCB is the lowest,
while the one of MUB is the highest. The computation
complexities of BOON and JSDM are comparable and both
are between the ones of MCB and MUB.

Fig. 11 illustrates the average execution time of the
experiments in each UE distribution, on a workstation with
an Intel Core i7 CPU and 32 GB RAM. The execution time of
BOON and JSDM are comparable and their time is between
the ones of MCB and MUB. This is consistent with the
time complexity comparison in Table 4. MUB uses much
more time than BOON and JSDM in all scenarios. MCB
uses less time than BOON and JSDM, but has much poorer
performance on average.
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TABLE 4
Computation complexity of BOON, MUB, MCB, and JSDM

BOON MUB MCB JSDM

Time complexity Θ(L2
∑

1≤i≤|B| qiQi) Θ(L2
∑

1≤i≤|B| k
2

i ) Θ(L2|U|) Θ(L2
∑

1≤i≤|B| kiGi)

6 CONCLUSION AND FUTURE DIRECTIONS

We have developed a novel Beamforming Oriented tOpology
coNtrol (BOON) framework for mmWave networks, with
the objective to reduce the total transmit power of all BSs
while forming beams to cover UEs. The BOON framework
includes four components, UE clustering, set construction,
set covering, and beamforming. We have compared BOON
with the multi-user and multicast beamforming based topol-
ogy control schemes, and a state-of-the-art scheme JSDM
on transmit power, sum rate, SINR, and computation com-
plexity. The results indicate that overall BOON significantly
outperforms them. For instance, BOON uses only 10%, 32%
and 25% transmit power on average, of the other three
schemes, respectively, to achieve the same sum rate in the
network.

For future directions, we will explore the possibility of
incorporating NLOS paths in topology control. Moreover,
we will study how to efficiently adjust the UE clustering, set
covering, and beamforming to avoid re-running the entire
process for a small number of UEs moving out of scopes
of the original beams. Such improvements will strengthen
BOON to efficiently address the UE mobility.
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