
Variational Method for the Helium Ground State

The Hamiltonian for Helium is given by

H =
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where r12 = |~r1 − ~r2|. To obtain an estimate function for the ground state
consider neglecting the r12. The remaing contribution to the Hamiltonian is
then given by, using spherical coordinates,

H =
2∑
i=1

[
− h̄2
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i

∂
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i

∂
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)
− Ze2
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]
. (2)

Since the Hamiltonian is symmetric with respect to particle one and two in this
form it can be seen that the ground state functions will be of the same form
(assuming that the two electrons couple their spins to total spin = 0, which
means that their spatial wave function will be symmetric). In this respect, the
ground state (lowest energy) solution of the two particle wave function can be
found in the form

|ψ0(r1, r2) >=

2∏
i=1

u(ri). (3)

With this functional form of the ground state the Schrodinger equation,

H|ψ0(r1, r2) >= E|ψ0(r1, r2) >,

leads to the equation
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r2
i
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∂ri
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∂u

∂ri

)
+

2m
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(
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Ze2

ri

)
u = 0, (4)

for u(ri) for i = 1, 2 and E = E1 + E2 = 2E1. The solution of the differential
equation is of the form

u(r) = Ae−ar. (5)

It is easily seen that a = Z/a0, where a0 = h̄2/me2, and Ei = −(Ze)2/(2a0).
From this it is readily clear that

|ψ0(r1, r2) >= A2e−
Z
a0

(r1+r2). (6)

The normalization will invoke the use of a symmetry argument during the
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calculation. With this in mind the normalization follows.

1 =< ψ0(r1, r2)|ψ0(r1, r2) >

= A4

∫
r1

∫
r2

e−
2Z
a0

(r1+r2)d3r1d
3r2

= A4

[∫ ∞
0

∫
Ω

e−
2Zr
a0 r2drdΩ

]2

= A4(4π)2

[∫ ∞
0

e−
2Zr
a0 r2dr

]2

1 = A4

(
πa3

0

Z3

)2

. (7)

From this result the value of A is given by

A =

√
Z3

πa3
0

. (8)

The normalized ground state wave function to be used is now provided by

|ψ0(r1, r2) >=
Z3

πa3
0

e−
Z
a0

(r1+r2) (9)

while the energy is given by E = −(Ze)2/a0 = 8EH = −108.8 eV. This is
considerably more negative than the experimentally known binding energy of
He, -78.6 eV.

Since the ground state function for non-interactions has been found it can
now be used to estimate the general state with interaction terms. In general the
variational method is given by the form

< E >=
< ψ|H|ψ >
< ψ|ψ >

. (10)

Since the wave functions being used have been normalized the form of < E >
is then reduced to < E >=< ψ|H|ψ >.

Consider the argument that in the presence of another electron, each of the
electrons are influenced by a decreased charge from the nucleus. With this in
mind let Z → Z − σ, where σ is the screening charge. Under this change the
ground state wave function becomes

|ψ0(r1, r2) >=
(Z − σ)3

πa3
0

e−
Z−σ
a0

(r1+r2). (11)

The Hamiltonian, equation (1), can be seen in the following form.

H =
1

2m

(
P 2

1 + P 2
2

)
− Ze2

(
1

r1
+

1

r2

)
+

e2

r12

H =

2∑
i=1

[
P 2
i

2m
− (Z − σ)e2

ri

]
− σe2

(
1

r1
+

1

r2

)
+

e2

r12
. (12)
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Using this shifted form of the Hamiltonian it is evident that H|ψ0 > becomes

H|ψ0(r1, r2) > =

[
E(Z − σ)− σe2

(
1

r1
+

1

r2

)
+

e2

r12

]
|ψ0(r1, r2) >

=

[
− (Z − σ)2e2

a0
− σe2

(
1

r1
+

1

r2

)
+

e2

r12

]
|ψ0(r1, r2) > . (13)

Since < E >=< E(σ) > is being sought in the form < ψ|H|ψ > it is evident
that

< E > = − (Z − σ)2e2

a0
< ψ0|ψ0 > −σe2 < ψ0|

(
1

r1
+

1

r2

)
|ψ0 >

+ < ψ0|
e2

r12
|ψ0 >

= − (Z − σ)2e2

a0
− σe2 < ψ0|

(
1

r1
+

1

r2

)
|ψ0 > + < ψ0|

e2

r12
|ψ0 > . (14)

The expected energy value can be seen as

< E >= − (Z − σ)2e2

a0
− σe2I1 + e2I2, (15)

where

I1 =< ψ0|
(

1

r1
+

1

r2

)
|ψ0 > (16)

and

I2 =< ψ0|
1

r12
|ψ0 > . (17)

The caculations of I1 and I2 are to follow. For I1 it proceeds as follows,
where A2

σ is the normalization constant of (11).

I1 =< ψ0|
(

1

r1
+

1

r2

)
|ψ0 >

= A4
σ

∫
r1

∫
r2

(
1
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+

1
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(r1+r2)d3r1d
3r2
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σ(4π)2

[∫ ∞
0
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r1r1dr1 ·
∫ ∞

0

e−
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r2r2
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+

∫ ∞
0

e−
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∫ ∞

0

e−
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]
= 25π2A4

σ

∫ ∞
0

e−
2(Z−σ)t
a0 tdt ·

∫ ∞
0

e−
2(Z−σ)u

a0 u2du

= 25π2A4
σ ·

a2
0

4(Z − σ)2
· a3

0

4(Z − σ)3

=
2a5

0π
2A4

σ

(Z − σ)5
. (18)
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Using the normalization constant A2
σ from equation (11) the desired value be-

comes

I1 =
2(Z − σ)

a0
. (19)

The calculation of I2 is a little more difficult as will be seen. The method of
calculation is to use the multipole expansion

1

r12
=


1
r2

∑∞
n=0

(
r1
r2

)n
Pn(cos θ) 0 ≤ r1 ≤ r2

1
r1

∑∞
n=0

(
r2
r1

)n
Pn(cos θ) r2 ≤ r1 ≤ ∞

. (20)

It is seen that the only contribution comes from the n = 0 terms in the case
being considered in this example, since

∫
Pn(cos θ)dΩ = 0 for all n > 0.

The evaluation of I2 follows.

I2 =< ψ0|
1

r12
|ψ0 >

= A4
σ(4π)2

∫ ∞
0

∫ ∞
0

e−
2(Z−σ)
a0

(r1+r2) r
2
1r

2
2

r12
dr1dr2

I2 = (4π)2A4
σ

∫ ∞
0

e−
2(Z−σ)
a0

r2f(r2)r2
2dr2, (21)

where

f(r2) =

∫ ∞
0

e−
2(Z−σ)
a0

r1 r
2
1

r12
dr1. (22)

The integral f(r2) can be evaluated as follows.

f(r2) =
1

r2

∫ r2

0

e−
2(Z−σ)
a0

r1r2
1dr1 +

∫ ∞
r2

e−
2(Z−σ)
a0

r1r1dr1

=
a3

0

8(Z − σ)3r2

∫ b

0

e−tt2dt+
a2

0

4(Z − σ)2

∫ ∞
b

e−ttdt, (23)

where the substitution t = 2(Z − σ)r1/a0 was used and b = 2(Z − σ)r2/a0.
It is readily seen that∫ x

0

e−tt2dt = 2− (x2 + 2x+ 2)e−x (24)

and ∫ ∞
x

e−ttdt = (x+ 1)e−x. (25)
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When these relations are used f(r2) becomes

f(r2) =
a2

0

4(Z − σ)2

[
a0

(Z − σ)r2
−
(

1 +
a0

(Z − σ)r2

)
e−

2(Z−σ)r2
a0

]
. (26)

From this result for f(r2) the value or I2 from equation (21) becomes

I2 =
4π2a2

0A
4
σ

(Z − σ)2

[
a0

Z − σ

∫ ∞
0

e−
2(Z−σ)r

a0 rdr − a0

Z − σ

∫ ∞
0

e−
4(Z−σ)r

a0 rdr

−
∫ ∞

0

e−
4(Z−σ)r

a0 r2dr

]
=

π2a5
0A

4
σ

(Z − σ)5

[
3

4

∫ ∞
0

e−ttdt− 1

16

∫ ∞
0

e−tt2dt

]
=

5π2a5
0A

4
σ

8(Z − σ)5

I2 =
5(Z − σ)

8a0
. (27)

Now that the elements have been calculated, equations (15), (19), and (27)
may be combined to provide the energy form as

< E(σ) >= − e
2

a0
(Z − σ)2 − 2σ

e2

a0
(Z − σ) +

5

8

e2

a0
(Z − σ)

= − e
2

a0
Z2 +

e2

a0
σ2 +

5

8

e2

a0
(Z − σ). (28)

The maximized value can be found by taking the derivative of < E > with
respect to σ and set to zero. This yields

0 =
∂ < E >

∂σ
= 2

e2

a0
σ − 5

8

e2

a0
(29)

from which σ = 5/16 is obtained.
Using the value of σ = 5/16 in the energy and wave function lead to

|ψ0(r1, r2) >=
1

πa3
0

(
Z − 5

16

)3

e−
16Z−5
16a0

(r1+r2) (30)

and

< E >= − e
2

a0

(
Z − 5

16

)2

. (31)

As an example of the resulting analysis let Z = 2, as is the case for Helium.
The ground state energy is calculated to be E0 = −77.456 eV, which is in
fairly good agreement with the known experimental value, E0 = −78.975 eV.
The variational method, which overestimates the energy values, differs from the
known value by only 1.9%.
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