

$$E = mc^2$$
?

In atomic and nuclear physics, masses are typically given in atomic mass units (u) 1 u = 1.66054 * 10-27 kg = 931.494 MeV/c2

Proton = 938 MeV Neutron = 939.5 Mev

Mass defect = 0.002388 amu

Atomic Binding energy

Nuclear Binding energy

 $B_{atomic} = M_N c^2 + Zm_e c^2 - M_A c^2$ $M_N = Mass of Nucleus$

Bnuclear = $Zm_pc^2 + Nm_Nc^2 - M_Ac^2$ M_A = Atomic mass

eV's to keV's

MeV's

A= N + Z
A= Atomic Mass Number
N=Neutron Number
Z=Proton Number

Nuclear Force

- Charge independent.
- Highly dependent on distance
- Saturated force

Nuclear Force

- Charge independent.
- Highly dependent on distance
- Saturated force
- Coulomb Repulsion will overcome the Nuclear Force as atoms become larger.

