Scattering Experiments (how to interpret them)

 Experimental Overview

* NN scattering

* Partial Waves and Phase Shifts
e Optical Theorem

* S-Matrix

Next Week: Elastic Scattering, Feynman Rules, Form Factors



Scattering: an Experimental Overview

A+B =2 C+D

Detector at 0, @ with area da at distance r
dQ =da/r’ = 5in@d0do
We measure # counts N detected in detector at 0, ¢ with solid angle d€2:

*

do N .
= Units are area per
dC2 (#target particles)(# beam particles) solid angle

#/unit area Integrated current/e

Hadronic processes ~ 1 millibarn
Electromagnetic ~ 1 nano barn
Weak ~ 1 femtobarn

Units: 1 barn = 1028 m?



NN Scattering

Short range nuclear force, 2
potential V(r) 5
V(r) = 0 except in the interaction |
region "L o8 P L) L0 2N L
' eikr :
w(r,0,8)—e" + f(6,0)— K=N2HE [T
r  is the reduced mass

Outgoing spherical wave

Incoming plane wave

+ unscattered Scattering amplitude

f(6,0) 1s independent of ¢ 1f the beam and target are unpolarized



Cross section

Quantum mechanical probability current density:
S(r,t):Re{l//*EVy/} Elm{l//*VI//}
11 H

hk

S=—=vy S; 1s the number of incident particles
Cu passing through a unit area
Vv 2 L perpendicular to the z-axis.
5, = ?‘f (9)‘ +0(r ) There is a normalization volume ¥

that cancels in the cross section and
can be taken to be 1.

Number of particles detected per unit time:
N =Sda=SrdQ

do S r’ —‘f(@)‘ Ignoring spin so cross section is
dQ independent of ¢



Partial Waves

For a central potential the relative angular momentum /
between two scattered particles is conserved.

w(r.0)=>YaY R(kr)  NotethatV (6)= 2’; P(cos6)

R; (I‘) scattering N 1 sin(kr—%ln+5 ) Elastic scattering; phase
roe " L ! change only

The incoming plane wave can also be decomposed into partial waves:

= Z\/‘W(Z” 1)i’jl (kr)YIO(G) Free particle: V=0
I

sin(kr—1ir)
i (kr)—£— z
Jytkr)—=2 o

Scattering due to potential V(r) causes partial 8,is the phase shift.
wave | to be shifted by 6, compared to a free

particle.



Elastic Scattering

The scattering amplitude can also be expressed in terms of partial waves:

f(@)——vzx/21+1e sind Y ()
N hat §, d d k
:4—ZZ(21+1)sin251 ote that §, depends on
1

This result assumes real potential and phase shifts:
Elastic scattering

Phase shifts can be compared with calculations

More generally we need to consider complex potentials, which lead to complex
phase shifts (inelastic scattering).

So far we have ignored spin; we need to consider total angular momentum
J=L+S



Phase Shifts — NN scattering Wong, pg. 97

Notation: »*1L,

NN wavefunction must be antisymmetric

pp scattering:
T=1 (sym)
S =0 (anti sym)
L=0or2(sym) 1S,or'D,
S=1landL=1
J=0,1,0r2 3P,*P*P,

I
[+
3
=

%
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PHASE SHIFTS (degrees)

np scattering:
T=0; S=0; Lodd 1'P,
T=1; S=1;Lodd 3P, P3P,

(chnp ]

3

isoscalar

For & > 0 force is attractive
For 6 < 0 force is repulsive 3ct— T =

LABORATORY KINETIC ENERGY (MeV)

R is decreasing as energy increases



NN Potential

Hard Repulsive Core forr ~ 0.4 fm
Attractive at r >~ 1 fm
Long range part starts at ~ 2 fm

POTENTIAL VI(r)

TWO NUCLECNS
OVERL AP

NN

HARD SCALAR NESON PON
CORE E XCHANGE EXCHANGE

-



Low Energy Scattering

Relative angular momentum causes an effective barrier to the
incoming particle

1% =V(r)+ n’ I(1+1) Low energy scattering is dominated by low
(r)=Vir 2 1’ order partial waves
51 — 0 for /> krO r, is the range of the potential

For E=1 MeV, kr,~ 0.2

At very low energies, we define the scattering length a

limo =4ra’
E—0



Scattering from a Complex Potential

Scattering amplitude and phase shift are complex
u,(r)=rR (r)—==—1,(r)-n,0(r)
Inelasticity parameter

‘ 2

G‘”=%Z(21+1)\1—n,
|

" =£22(21+1)(1—\n,\2)
k5

ot = 4—7rlmf(0) Optical Theorem: total cross section is related to
k scattering at® =0



S Matrix

Define reaction channel c to include all quantum numbers of target and
projectile, as well as relative orbital angular momentum, / and m.

S =W (S ()

do |\ _Zy Jarvns.y
dQ . kZ - cc Im

C

The S matrix is unitary:

2 |s..

all states

2
=1




Mandelstam Variables

A+B =2 C+D

S = (pA + pB)z
t= (pA - pc)z

U= (pA - pD)2
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