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Abstract. We consider the de Gennes’ smectic A free energy with a complex

order parameter in order to study the influence of magnetic fields on the smectic
layers in the strong field limit as well as near the critical field. In previous work

by the authors [6], the critical field and a description of the layer undulations

at the instability were obtained using Γ-convergence and bifurcation theory.
It was proved that the critical field is lowered by a factor of

√
π compared to

the classical Helfrich Hurault theory by using natural boundary conditions for
the complex order parameter, but still with strong anchoring condition for the

director. In this paper, we present numerical simulations for undulations at

the critical field as well as the layer and director configurations well above the
critical field. We show that the estimate of the critical field and layer config-

uration at the critical field agree with the analysis in [6]. Furthermore, the

changes in smectic order density as well as layer and director will be illustrated
numerically as the field increases well above the critical field. This provides the

smectic layers’ melting along the bounding plates where the layers are fixed.

In the natural case, at a high field, we prove that the directors align with the
applied field and the layers are homeotropically aligned in the domain, keeping

the smectic order density at a constant in L2.

1. Introduction. In a previous article [6], the authors have investigated the un-
dulation phenomena induced by magnetic fields in smectic A liquid crystals using
the complex de Gennes model. Using bifurcation theory and Γ-convergence, the au-
thors found the critical magnetic field and were able to describe the director and the
smectic layers at the onset of undulations. The model used in [6] for the numerical
study assumes that the density of the smectic layers is constant. In this paper, we
consider the full model, in which the density is allowed to fluctuate, and show that
the critical field and other qualitative features are consistent with the analytical
results given in [6]. This models can describe the director, layer phase and density
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profiles well above the critical field as well as at the onset of undulations. We study
the phenomenon numerically, and obtain an analytic expression for the minimizer
in the high field regime.

We consider a smectic A liquid crystal confined between two flat plates and
uniformly aligned in a way that the smectic layers are parallel to the bounding
plates and the directors are aligned homeotropically, that is, perpendicular to the
smectic layers. If a magnetic field is applied in the direction parallel to the smectic
layers, an instability occurs above a threshold magnetic field. When the magnetic
field reaches this critical threshold, periodic layer undulations are observed. This
phenomenon is called the Helfrich-Hurault effect (see [10] and [11]).

We consider a two dimensional rectangular domain and impose periodic bound-
ary conditions on the lateral boundaries. For the liquid crystal director, strong
anchoring conditions are employed on the top and bottom bounding plates. We
consider two types of boundary conditions for the smectic order parameter: Dirich-
let and Neumann (or natural) boundary conditions. Employing Dirichlet boundary
conditions fixes the layers flat at the bounding plates. In this case, we showed that
the critical field is the same as in the classical Helfrich-Hurault theory. Furthermore,
as in the classic Helfrich-Hurault theory, the maximum undulation amplitude oc-
curs in the middle of the cell and decreases near the bounding plates at the onset of
undulations; the perturbation increases as the field increases. However, when using
natural boundary conditions for the smectic order parameter, the boundary layers
are allowed to fluctuate, which lowers the critical field and increases the undulation
amplitude at the onset of the undulations.

With the analysis presented in [6], the authors were able to connect the model
(4) below with two simplified models used for the study of undulations in lateral
systems: 1) The classical Helfrich-Hurault model, and 2) the model introduced by
Lavrentovich and collaborators [12, 19].

In the classical Helfrich-Hurault theory, one identifies the director and layer nor-
mal. Writing the displacement of the layers as u = y −∇φ, where φ parametrizes
the layer surface, the classical model is given by∫

Ω

(
K

2
u2
xx +

B

2
u2
z −

χaH
2

2
u2
x

)
dxdy. (1)

This can be obtained as the Γ-limit of the functional (4) when Dirichlet boundary
conditions are imposed, as established in [6]. Thus, it is not surprising that the
estimate of the critical field and undulation profiles in [6] are identical to the results
from the Helfrich-Hurault theory. In this case the critical field is given by

HD
c ∼

(
Kπ

χad0λ

√
r

g

) 1
2

, (2)

where the elastic length λ =
√

K
Cq2 is of the order of the layer thickness. This value

is the same as the one from the classical Helfrich-Hurault theory except for the ap-
pearance of

√
r/g. However, well above the critical field, our numerical simulations

show differences between the director and the layer normal. Moreover, on some
regions of the domain, the layer density gets close to zero at high fields. In partic-
ular, along the bounding plates, melting of the smectic layers occurs at high fields
when Dirichlet boundary conditions are imposed, with leads to the development of
nematic defects.
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When natural boundary condition is employed, it was proved in [6] that the Γ-
limit recovers the functional used in [12, 19], where a soft anchoring conditions is
introduced as a penalty in the energy, again identifying the director and the layer
normal. They showed using this model that a lower threshold in the magnetic field
produces larger undulations, and these as less dependent on the vertical axis than
those from the classical Helfrich-Hurault theory, as observed in their experiments.
Our results on critical fields and undulation profiles can also explain the experiments
in [12, 19]. The critical field in this case is given by

HN
c ∼

(
K

χad0λ

√
r

g

) 1
2

. (3)

One can see that imposing natural boundary conditions on the smectic order pa-
rameter reduces the critical field by a factor of

√
π. Note that in both Dirichlet and

Neumann cases, a strong anchoring condition is imposed on the director.
From a physical point of view, determining the critical field is useful because

among other things it allows one to estimate the value of the elastic length λ.
In [12] and [14], the authors discussed this issue, and they found a discrepancy
between the value of the elastic constants obtained from λ using the Helfrich-Hurault
theory and the value obtained from the Lubensky-de Gennes theory [1]. Instead of
λ = (8.5±1.7)µm, which is the value obtained in the classical theory, they measured
λ independently and found that λ = (2.9±0.1)µm. From the discrepancies between
HD
c and HN

c , one can see that the classical value of λ needs to be reduced by a
factor of π. This can explain the correct value of λ obtained in [12].

We have proved also in [6] that under natural boundary conditions the vertical
dependence of the undulation amplitudes is almost lost at the onset of the undula-
tions as ε→ 0 where the small parameter ε is the ratio of the layer thickness to the
sample thickness. Numerical simulations show a mismatch between the director and
the layer normal near the boundary even at the onset of the undulations. This is
not the case with the Dirichlet boundary condition on the smectic order parameter.

In [16], the authors proved that under very strong magnetic fields, a smectic A
liquid crystal (with natural boundary conditions on the smectic order parameter)
may not be in the nematic state. In fact, the strong magnetic field reorients the
director to be parallel to the magnetic field inside the domain and the smectic layer
density is kept away from zero. The results in [16] were our main motivation to
study the director and smectic order parameter at high fields.

In section 2, the de Gennes free energy is introduced and a dimensionless small
parameter ε is identified in the process of nondimensionalization. Estimates of
the critical fields for both cases of Dirichlet and natural boundary conditions are
presented. In section 3 we formulate the gradient flow of the de Gennes free energy
and illustrate numerically the effect of magnetic fields on smectic liquid crystals.
The director configuration, layer structure, and smectic order density profiles are
shown for various magnetic field strengths. In the natural boundary condition case,
we obtain analytically the director and layer structure of smectic A liquid crystals
under very strong magnetic fields by studying the minimizers of de Gennes free
energy in section 4. We prove that at high fields, the director is aligned parallel
to the magnetic field and initially flat layers change to a vertically aligned uniform
structure in order to accommodate the director configurations.
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2. Model and preliminary results. We study the Landau-de Gennes energy [2]
to understand the effect of an applied magnetic field on smectic A liquid crystals.
The model, introduced by de Gennes, is described in terms of the director n and the
complex order parameter ψ = ρ(x)eiqω(x) for the layered structure. The unit vector
field n, director field, represents the average direction of molecular alignment. The
molecular mass density is defined by

δ(x) = ρ0(x) +
1

2
(ψ(x) + ψ∗(x)) = ρ0(x) + ρ(x) cos qω(x),

where ρ0 is a locally uniform mass density, ρ(x) is the mass density of the smectic
layers, and ω parametrizes the layers so that ∇ω is the direction of the layer normal.
Also, q is the wave number and 2π/q is the layer thickness. If ψ ≡ 0, then it
corresponds to a state with no layered structure, so it is in a nematic phase. If
|ψ| = ρ is a nonzero constant, it corresponds to a smectic state throughout the
domain.

In the one constant approximation case for the Oseen-Frank nematic energy, the
total free energy is given by,

G(ψ,n) =

∫
Ω0

(
C|∇ψ − iqnψ|2 +K|∇n|2 +

g

2

(
|ψ|2 − r

g

)2

− χaH2(n · h)2

)
dx.

(4)
The material parameters C,K, g, and temperature r are fixed positive constants
and Ω0 = (−L0, L0) × (−d0, d0) is a rectangular domain. If ρ is a constant, then
the first term of (4) becomes

Cq2ρ2

2
|∇ω − n|2.

This energy density vanishes when ∇ω = n, which describes the configuration of
smectic A liquid crystals. The last term in (4) is a contribution to the magnetic
free energy density, where χa is the magnetic anisotropy, H is the magnitude of the
magnetic field and h is a unit vector representing the direction of the applied field.
We assume that χa > 0. As a consequence, the director has a preferred orientation
parallel to the direction of the applied magnetic field. The magnetic field is applied
in the direction parallel to the layers. We shall assume that

h = e1.

We define the dimensionless order parameter, ϕ =
√

g
rψ, and do the change of

variables x̄ = qx; then we obtain a nondimensionalized energy

G(ϕ,n) =
Cr

g

∫
Ω

(
|∇ϕ− inϕ|2 + K̃|∇n|2 +

g̃

2
(1− |ϕ|2)2 − σ(n · h)2

)
dx̄, (5)

where

K̃ =
Kg

Cr
, g̃ =

r

Cq2
, σ =

χaH
2g

Crq2
, (6)

and

Ω = (−L,L)× (−d, d), L = qL0, d = qd0.

Assuming n = (sin θ, cos θ), the uniformly layered state, (ϕ0, θ0) ≡ (c̃eiy, 0), is a
trivial critical point of G where c̃ ∈ C such that |c̃| = 1. The second variation of G
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at the undeformed state, ϕ0 = c̃eiy, θ0 = 0, is

1

2

g

Cr

d2

dt2
G(ϕ0 + tϕ, tθ)

∣∣∣
t=0

=

∫
Ω

(|ϕx − iθϕ0|2 + |ϕy − iϕ|2

(7)
+K̃|∇θ|2 + 2g̃[Re(ϕ0ϕ̄)]2 − σ|θ|2) dx̄dȳ.

The undeformed state, (θ0, ϕ0), is stable if the second variation is nonnegative. As
in [16] and [6], we write

ϕ = iϕ0φ. (8)

Then the second variation above becomes∫
Ω

(|φx − θ|2 + |φy|2 + K̃|∇θ|2 + 2g̃[Im(φ)]2) dx̄dȳ − σ
∫

Ω

|θ|2 dx̄dȳ. (9)

In order to find the critical value of σ, we minimize (9) over functions satisfying
‖θ‖2 = 1. Note that in this case only the first four terms need to be considered in
the minimization. Additionally, given a minimizer φ = <{φ}+ i={φ}, the function

φ̃ = <{φ} is admissible, and has lower energy. Therefore one may assume that φ is
a real-valued function. Thus we set

L(φ, θ) =

∫
Ω̄

(|φx − θ|2 + |φy|2 + K̃|∇θ|2) dx̄dȳ (10)

and consider two admissible sets, AN , and AD, defined by

AN = {(φ, θ) ∈ H1(U)×H1(U) : ‖θ‖2 = 1, θ(x,±d) = 0 for all x},
and

AD = {(φ, θ) ∈ AN : φ(x,±d) = 0 for all x},
respectively, where U = R/(−L + 2LZ) × (−d, d). A detailed analysis of the func-
tional (9) in these two admissible sets was presented in the previous paper [6]. Note
that AD corresponds to the setting where the layers are fixed at the cell bound-
aries since φ is the layer and smectic mass density perturbation from the undeformed
smectic state. On the other hand, we do not impose any constraint on the boundary
values of the order parameter φ in AN , which leads to natural boundary conditions
for the minimizer. The critical field σic for i = D or i = N is then defined by

σic = inf
(φ,θ)∈Ai

L(φ, θ). (11)

We introduce now the following change of variables, which will help us obtain a
dimensionless small parameter ε. This is the nondimensionalized energy used in [6]
for the use of Γ-convergence. Setting

x̃ =
1

qd0
x̄, ỹ =

1

qd0
ȳ, φ(x, y) = qd0 φ(x̃, ỹ), (12)

we write (10) as

K̃

ε

∫
Ω̃

(
1

ε
(φx − θ)2 +

1

ε
φ2
y + ε|∇θ|2 − τθ2

)
dx̃dỹ =:

K̃

ε
J (θ, φ), (13)

where

ε =

√
K̃

qd0
=

λ

d0

√
g

r
� 1 and τ =

σ

ε
. (14)

Here the dimensionless domain is

Ω̃ = (−r, r)× (−1, 1) where r =
L

d
. (15)
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Since λ is of the order of the smectic layer thickness and thus ε in (14) is the ratio
of the layer thickness to the cell thickness, we may assume that ε� 1. In fact, the
values d0 = 1mm and λ = 20Å are employed in [3].

Functional (13) was extensively studied in [6] to obtain sharp estimates of the
critical field and the undulation modes under both Dirichlet and Natural boundary
conditions imposed on φ. When Dirichlet boundary conditions are used, the anal-
ysis recovers results that are consistent with the classical Helfrich-Hurault theory.
However, with natural boundary condition, we have found that the critical field is
lowered by a factor of 1/π; the undulation profiles have a weak dependence on the
vertical coordinate and have larger amplitudes, as expected from the experiments
in [19].

The sharp estimates of the critical fields defined in (11) for Dirichlet and Natural
boundary conditions on the complex order parameter obtained in [6] are given by

σDc ≈ πε and σNc ≈ ε (16)

for ε small, which is given in (14). In terms of the original elastic constants, the
critical fields are estimated in (2) and (3) from (6).

3. Numerical simulations. We consider the gradient flow (in L2) of the energy
(5) and study the behavior of the solutions with both Dirichlet and natural boundary
conditions. The gradient flow equations are

∂n

∂t
= Πn

(
K̃∆n−=[ϕ(∇ϕ)∗]− |ϕ|2n + σ(n · h)h

)
,

(17)
∂ϕ

∂t
= ∆ϕ− 2in · ∇ϕ− i(∇ · n)ϕ− ϕ+ g̃(1− |ϕ|2)ϕ,

where we have defined, for a given vector f ∈ R3, the orthogonal projection onto
the plane orthogonal to the vector n as

Πn(f) = f − (n · f)n.

This projection appears as a result of the constraint |n| = 1. Motivated from the
numerical simulations for Landau-Lifshitz equation of micromagnetics in the high
damping limit [4], and the heat-flow of harmonic maps [20], we write this equation
as

∂n

∂t
= −n×

(
n×

(
K̃∆n−=[ϕ(∇ϕ)∗]− |ϕ|2n + σ(n · h)h

))
(18)

and use the projection method introduced in [4]. We let f∗ denote the complex
conjugate of f .

As initial condition, we consider a small perturbation from the undeformed state.
More precisely, for all (x, y) ∈ Ω,

n(x, y, 0) =
(εu1, 1 + εu2)

|(εu1, 1 + εu2)|
,

ϕ(x, y, 0) = eiy + εϕ0,

where a small number ε = 0.1 and u1, u2, and ϕ0 are arbitrarily chosen. We impose
strong anchoring condition for the director field,

n(x,±d, t) = e2 (19)
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and either a homogeneous Dirichlet boundary condition or a natural boundary
condition on ϕ at the top and the bottom plates. The natural boundary condition
on ϕ is

∂ϕ

∂ν

∣∣
y=±d = in · νϕ

∣∣
y=±d.

Periodic boundary conditions are imposed for both n and ϕ in the x direction.
We use a Fourier spectral discretization in the x direction, and second order

finite differences in the y direction. The fast Fourier transform is computed using
the FFTW libraries [5]. For the temporal discretization, we combine a projection
method for the variable n [4], with a semi-implicit scheme for ϕ: Given (ϕk,nk),
we solve

n∗ − nk

∆t
= K̃∆n∗ −=[ϕk(∇ϕk)∗]− |ϕk|2nk + σ(nk · h)h, (20)

nk+1 =
n∗

|n∗|
, (21)

ϕk+1 − ϕk

∆t
= ∆ϕk+1 − 2ink+1 · ∇ϕk − i(∇ · nk+1)ϕk − ϕk+1

(22)
+g̃(1− |ϕk|2)ϕk.

The second step (21) ensures that |nk+1| = 1 at each grid point. Note that |n∗| 6= 0
in (21) since we consider the case where there are no point defects in the liquid
crystal. The consistency and convergence of the projection method are given in [4].
The method is first order accurate in time and second order accurate in space due
to the first order accuracy of the projection method (20)-(21). To solve the implicit
system, we perform a discrete Fourier transform in the x direction. The resulting
tridiagonal systems in the y direction are solved using Gauss elimination.

We take the domain size L = 50 and d = 12.5 as in [6]. The number of grid points
in the x and y directions are 1024 and 512, respectively. Here we use parameters

K = 0.002, C = 0.02, g = 1, r = 0.5, and q = 10,

and then we obtain from (6)

K̃ = 0.2, g̃ = 0.25 and ε =

√
K̃

d
= 0.0358.

In Figure 1 we show the layer structures in response to various magnetic field
strengths κ. In the figures we show the contour maps of ϕ since the level sets of ϕ
represent the smectic layers. One can see that the undeformed state is stable for
values of σ below the critical field σc. If σ increases and reaches σc, layer undulations
occur.

We obtained the critical fields for both Dirichlet and Natural boundary conditions
on the layer variable ϕ in [6]. With d = 12.5, the critical field σDc under the Dirichlet
boundary condition is approximately

σDc ≈ επ = 0.1124.

Also, the critical field σNc under the natural boundary condition is approximately

σNc ≈ ε = 0.0358.

The layer structures in the first and second rows of Fig. 1 confirm the prediction of
the critical fields σDc and σNc for Dirichlet and natural boundary conditions on the
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smectic order parameter ϕ. We also obtained the frequency of the undulations in
[6]; In the Dirichlet case, the frequency is

µ

2πd
=

1

2

√
2πd

√
K̃

∼ 0.085

where 2π/µ = 2π/µn is the frequency in the Fourier series, which was approximated
by the formula εµ2 ∼ π/2 in [6]. Thus one may expect about 8 ∼ 9 frequencies in
the domain size 2L = 100 and this estimate is illustrated when σ = 0.12 in the left
column of Fig. 1. In the general case, the frequency is independent of ε, and hence
the frequency is the same as the one obtained in [6] where ε = 1/12.5 was used.
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Figure 1. Contour plots of ϕ, the solution of the system (17), near
the threshold. The first and the second column depict the layer
when the Dirichlet and natural boundary conditions are imposed
on ϕ, respectively.

At the onset of undulations, the smectic order density |ϕ| may present differences
between the Dirichlet and natural cases near the boundary of the domain. With
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Dirichlet conditions on ϕ, the directors are perpendicular to the layers and the
layers are rigid, |ϕ| = 1, everywhere in the domain (Fig. 2 (c)). In this case, the
director is also kept at a homeotropic orientation (Fig. 2(e)) near the cell plates
since the layers are fixed at the boundary. With natural boundary condition on ϕ
however, the directors are realigned near the boundary (Fig. 2 (f)), having small
perturbations from the homeotropic alignment, and thus lowering the energy, due to
the presence of the magnetic field. This explains the lower critical field σNc with the
case of natural boundary condition. However, one may notice that the layers cannot
accommodate the packing of the director at the top and bottom boundaries (Fig. 2
(b)), different from the Dirichlet case (Fig. 2 (a)). In [15], they expected some
smectic layer melting in the vicinity of the bounding plates where they have frozen
tilted layers. In fact, in order to compensate the frustration of the strong anchoring
condition and tilted layer structures at the boundary, numerical simulations show
smaller smectic order density, |ϕ| < 1 near the boundary as in Fig. 2 (d). The
director is not identical with the layer normal near the vicinity of the bounding
plates, which indicates that the model with two variables, the director and the
smectic order parameter, is essential to recover the correct critical field σNc .

The layer structure and its density and director profiles well above the critical
field are illustrated in Fig. 3 and Fig. 4 when Dirichlet and natural boundary condi-
tions on ϕ are considered, respectively. In the Dirichlet case, as the field increases,
the sinusoidal layer undulations transforms to the saw-tooth profile shown in Fig. 3
(a), (d), (g). As σ increases, the magnetic energy becomes more prevalent. Hence,
the director tends to be parallel to the magnetic field, which leads to an slight in-
crease in the frequency of the undulations. Numerical simulations show that the
frequencies of undulations increase with increasing σ, for moderate field strengths
for both Dirichlet and natural boundary conditions. This can be observed, for ex-
ample, for σ = 0.12 and σ = 0.2 in Fig. 1 for the Dirichlet case and for σ = 0.1 and
σ = 0.5 in Fig. 4 for the natural case.

We note that, however, the period becomes larger with the strength of the mag-
netic field where we have used the Chen-Lubensky functional with constant density
for the smectic A phase [7]. The presence of the second derivatives of the smectic
order parameter in the Chen-Lubensky free energy makes change of the first order
derivatives of the layer less preferable in the saw-tooth profiles of the undulations
and thus is responsible for decreasing frequencies with any strengths of applied
fields.

At higher fields, the frequencies start to decrease and layers become almost ver-
tically aligned away from the cell plates. In order to accommodate the vertically
aligned layer in the middle with the flat layer boundary condition, one can notice
that the smectic layer melting appear along the boundary, as shown in Fig. 3 (e)
and (f). The corresponding layer and director descriptions are given in Fig. 3 (b),
(c), and (h), (i), respectively. Experiments in [12] also describe the sinusoidal shape
at the onset of undulations and then at higher fields, the perturbation grows but
appears to be independent of the vertical axis in the middle portion of the cell. At
further higher field, the layers join the boundary discontinuously as in our Dirichlet
case and form an array of dislocations [13].

With natural boundary conditions, the layers are tilted for all field strengths
above the critical field (Fig. 1 and Fig. 4). This is achieved by making the smectic
order density |ϕ| < 1 for some boundary regions where the director and layer normal
differ. Nevertheless, |ϕ| is away from 0. (See Fig. 4 (e) and (f).) Unlike the Dirichlet
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Figure 2. At the onset of undulations. Numerical simulations
with strong anchoring conditions on the bounding plates. The first
and the second columns are solutions to the system (17) with the
Dirichlet and natural boundary conditions on ϕ, respectively. The
first row depicts contour plots of the phase, the second row is the
contour map of the dimensionless layer density |ϕ|, the third row
shows the director profiles.

case, complete smectic melting does not occur with the natural boundary condition
at any strengths of magnetic fields.

Furthermore, as σ increases well above the threshold, more areas of the domain
have smectic density |ϕ| ∼ 1, as in the case σ = 2 in Fig. 5. In the next section, we
prove that as σ → ∞, |ϕ| → 1 and the layers tend to vertical lines. At extremely
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high fields, the magnetic energy dominates and thus the directors are aligned parallel
to the magnetic fields except at the jumps between e1 = (1, 0) and −e1 and at the
bounding plates. The number of jumps decreases with increasing magnetic fields in
order to reduce the cost of the nematic energy (see (h) and (i) in Fig. 3 and Fig. 4).
However, one should not expect the uniform state. Even though the magnetic field
becomes extremely strong, there are still two jumps (Fig. 5) due to the periodic
boundary conditions imposed on the director and ϕ. The analysis on sawtooth
undulation profiles with two jump sets will appear in a future publication [8].
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Figure 3. Numerical simulations with Dirichlet boundary condi-
tions on ϕ on the bounding plates at various field strengths. The
first row depicts contour plots of the phase, the second row is the
contour map of the dimensionless layer density |ϕ|, the third row
shows the director profiles.

4. Configurations at high fields. In this section, we only consider natural bound-
ary conditions on ϕ at the top and bottom plates. The following theorem provides
the behavior of the director for large field in L2(Ω). For this, we follow from the
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Figure 4. Numerical simulations with Neumann boundary condi-
tions on ϕ on the bounding plates at various field strengths. The
first row depicts contour plots of the phase, the second row is the
contour map of the dimensionless layer density |ϕ|, the third row
shows the director profiles.

statement and the proof of [16] closely. In [16], they proved that a liquid crystal
will not be in the nematic phase no matter how strong the field is. We prove here
that it is still in the smectic phase in most of the sample. The director will tend to
align with the magnetic field under very strong fields except on the bounding plates
where the directors are enforced by the strong anchoring conditions.

We write the energy (5) as

Gσ(ϕ,n) =

∫
Ω

(
|∇ϕ− inϕ|2 + K̃|∇n|2 +

g̃

2
(1− |ϕ|2)2 − σ(n · e1)2

)
dxdy. (23)

We consider an admissible set

A = {(ϕ,n) ∈W 1,2(Ω)×W1,2(Ω,S1) : n(x,±h) = e2 for all x

n(−L, y) = n(L, y) and ϕ(−L, y) = ϕ(L, y)}, (24)
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Figure 5. Well above the threshold. The first row depicts contour
plots of the phase, the second row is the contour map of the dimen-
sionless layer density |ϕ|, the third row shows the director profiles.
The first and the second column depict the layer when Dirichlet
and natural boundary conditions are imposed on ϕ, respectively.

where L is an integer multiple of π. We note that theorems in this section can be
applied for the following admissible set, considered in [16],

B = {(ϕ,n) ∈W 1,2(Ω)×W1,2(Ω,S1) : n = e2 on ∂Ω}.

Let mσ be a global minimizer of the nematic liquid crystal energy,

Fσ(n) :=

∫
Ω

(K̃|∇n|2 − σn2
1) dxdy. (25)

In Lemma 5.5 of [16], they proved that a global minimizer mσ does not change its
sign for all field strengths, in particular, mσ → e1 or mσ → −e1 in L2(Ω) when
strong anchoring conditions on n is imposed on ∂Ω. We note that the same proof
can be applied with periodic boundary conditions on the lateral side of the domain.
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Thus we may assume that, passing to a subsequence,

mσ → e1 in L2(Ω) as σ →∞. (26)

For smectic A, however, we note that a minimizer nσ of the smectic A energy does
change its sign as shown in Fig. 2(e) and (f). The director goes through the splay
deformation at the undulation.

Before we state the main theorems in this section, we recall a few facts about
functions of bounded variation. We let BV (Ω) denote the set of all L1(Ω) functions
u such that the total variation∫

Ω

|Du| := sup

{∫
Ω

u (divζ) dx : ζ ∈ C1
c (Ω;R2), |ζ| ≤ 1

}
<∞

and for A ⊂ R2,

BV (Ω : A) = {u ∈ BV (Ω) : u(x) ∈ A a.e. x ∈ Ω}.

It is easy to see from the definition that if {un} ⊂ L1(Ω) and un → u in L1(Ω),
then ∫

Ω

|Du| ≤ lim inf
n→∞

∫
Ω

|Dun|.

In addition, for any R > 0, the set

BR :=

{
u ∈ L1(Ω)

∣∣∣∣∣
∫

Ω

|u|+
∫

Ω

|Du| ≤ R

}
is compact in L1(Ω) [9].

The next theorem provides the behavior of the director configurations at high
fields.

Theorem 4.1. Let (ϕσ,nσ) be a minimizer of Gσ(ϕ,n) in (23) for (ϕ,n) ∈ A
defined in (24).

: (a) For large σ, we have

Gσ(ϕσ,nσ) ≤ −|Ω|σ + C
√
σ,

for some positive constant C = C(K̃,Ω).
: (b) There exists n∞ ∈ BV (Ω : {±e1}) such that (up to extraction of a subse-

quence) nσ → n∞ in Lp(Ω) for all p <∞.

Proof. For n ∈W1,2(Ω;S1), we may write

Gσ(ϕ,n) = G̃σ(ϕ,n)− σ|Ω|,

where

G̃σ(ϕ,n) =

∫
Ω

(
|∇ϕ− inϕ|2 +

g̃

2
(1− |ϕ|2)2 + K̃|∇n|2 + σn2

2

)
dxdy (27)

=:

∫
Ω

g(ϕ,∇ϕ,n) dxdy.

To show (a), it suffices to prove that

G̃σ(ϕσ,nσ) ≤ C
√
σ (28)

for some positive constant C. We define a test map;

ϕ = eix, n = (sinφ, cosφ)
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where φ|Γ = 0 so that n|Γ = e2, here Γ is a top and bottom plates. We consider
Ωη = {(x, y) ∈ Ω : dist((x, y),Γ) < η} for small parameter η yet to be determined.

Define φ = π
2 in Ω− Ωη and |∇φ| ≤ C

η for some constant C. Then we have∫
Ω−Ωη

g(ϕ,∇ϕ,n) dxdy = 0.

In Ωη, we have∫
Ωη

g(ϕ,∇ϕ,n) dxdy =

∫
Ωη

(2− 2 sinφ+ K̃|∇φ|2 + σ cos2 φ) dxdy

≤
(
4 + K̃

C2

η2
+ σ

)
|Ωη| ≤ C0

(
C2K̃ + (σ + 4)η2

η

)
(29)

for some constant C0. We choose

η =
C
√
K̃
√
σ

σ + 4
.

This, together with (29), gives

G̃σ(ϕ,n) ≤ 2C
√
K̃C0

(√
σ +

2√
σ

)
≤ 3CC0

√
K̃σ

for σ large. This gives the first part of the theorem. Now we claim that there is
a subsequence of n∞, not relabeled, such that nσ → n∞ in L1(Ω) as σ → ∞ and
|n∞| = 1. From (27) and (28), we have∫

Ω

(
K̃√
σ
|∇nσ|2 +

√
σ|(nσ)2|2

)
≤ C.

Writing nσ = (uσ, vσ) ∈ S1 and using 0 ≤ 1− u2
σ ≤ 1, we have

K̃√
σ

∫
Ω

|∇uσ|2 +

√
σ

2

∫
Ω

(1− u2
σ)2 ≤ C, (30)

√
σ

2

∫
Ω

|vσ|2 < C. (31)

Functional (30) is a classical Modica-Mortola model [17] for the study of phase
transitions. Following [18], one can see that there exist a subsequence, still labelled
uσ, and u∞ ∈ BV (Ω : {±1}) such that

uσ → u∞ in L1(Ω).

To prove this, define the function

Φ(x) =

∫ x

−1

|1− t2| dt.

It follows from (30) that∫
Ω

|DΦ(uσ)| =
∫

Ω

|∇uσ||1− u2
σ| ≤ C.

If we define zσ = Φ(uσ), it follows from this bound and |uσ| ≤ 1 that {zσ} is
bounded in the BV -norm. Thus there exists z∞ ∈ L1(Ω) and a subsequence (not
relabeled) such that zσ → z∞ in L1(Ω) and pointwise a.e. in Ω. Since the function
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Φ is strictly increasing and continuous on [−1, 1], its inverse, denoted by Ψ, is
continuous. Define u∞ = Ψ(z∞). Since uσ = Ψ(zσ) and |uσ| ≤ 1, it follows by the
Dominated Convergence Theorem that uσ → u∞ in Lp(Ω) for all 1 ≤ p <∞. As a
consequence of (30) and Fatou’s lemma, we get that |u∞| = 1 a.e. in Ω, and since
z∞ ∈ BV (Ω), then u∞ ∈ BV (Ω : {±1}).

This, together with the inequality (31) and |uσ|, |vσ| ≤ 1, concludes that {nσ} is
precompact in Lp(Ω) for all p <∞ and thus part (b) is proved.

Now we find an approximation for the smectic order parameter ϕ at high fields.

Theorem 4.2. Let (ϕσ,nσ) be a minimizer of Gσ(ϕ,n). Then there is a subse-
quence, still labeled (ϕσ,nσ) and (ϕ∞,n∞) ∈W 1,2(Ω)× L2(Ω,S1) such that

(ϕσ,nσ)→ (ϕ∞,n∞) in L2(Ω)× L2(Ω)

as σ → ∞. We also have u∞ = u∞(x) with |u∞| = 1 and v∞ = 0 where n∞ =
(u∞, v∞) and ϕ∞ can be written as

ϕ∞ = ceiφ

for some |c| = 1 and φ =
∫ x

0
u∞(s)ds.

Proof. We use a test function, ϕ0 = eix and a global minimizer mσ of Fσ(n) such
that mσ → e1 in L2(Ω) by (26). Then

Gσ(ϕσ,nσ) ≤ Gσ(ϕ0,mσ) =

∫
Ω

|e1 −mσ|2 dxdy + Fσ(mσ).

Thus, ∫
Ω

(
|∇ϕσ − inσϕσ|2 +

g̃

2
(1− |ϕσ|2)2

)
dxdy

≤
∫

Ω

|e1 −mσ|2 dxdy + Fσ(mσ)−Fσ(nσ)

≤
∫

Ω

|e1 −mσ|2 dxdy

since mσ is a minimizer of Fσ. Also, from (26), we have∫
Ω

(
|∇ϕσ − inσϕσ|2 +

g̃

2
(1− |ϕσ|2)2

)
dxdy → 0 (32)

as σ →∞. From the second term, we have∫
Ω

|ϕσ|2dxdy ≤ C.

Now from the first term, we have∫
Ω

|∇ϕσ|2dxdy ≤
∫

Ω

|nσ|2|ϕσ|2dxdy ≤ C.

Then there is ϕ∞ ∈W 1,2(Ω) and a subsequence, not relabeled, such that ϕσ ⇀ ϕ∞
in W 1,2(Ω) and ϕσ → ϕ∞ in L2(Ω). Then, from (32) and Theorem 4.1,

0 = lim inf
σ→∞

∫
Ω

(
|∇ϕσ − inσϕσ|2 +

g̃

2
(1− |ϕσ|2)2

)
dxdy

≥
∫

Ω

(
|∇ϕ∞ − in∞ϕ∞|2 +

g̃

2
(1− |ϕ∞|2)2

)
dxdy.
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One can see that,

|ϕ∞| = 1 and ∇ϕ∞ = in∞ϕ∞. (33)

We claim that

ϕ∞ = ceiφ

where φ(x) =
∫ x

0
u∞(s)ds for some constant c such that |c| = 1, applying the

method of proof in [16]. At a point x0 in Ω, we may represent ϕ∞ by ρeiφ with
ρ > 0 on N(x0), a neighborhood of x0. Then (33) implies

ρ = 1 and ∇φ = n∞ =

(
u∞
v∞

)
(34)

on N(x0). It follows from Theorem 4.1 that |u∞| = 1 and v∞ = 0 and hence we
have φ = φ(x) and u∞ = u∞(x). Thus we get on N(x0)

ϕ∞ = ceiφ

where φ(x) =
∫ x

0
u∞(s)ds for some constant c such that |c| = 1. Since c does not

depend on x0 in a rectangular domain Ω, the claim is proved.

5. Conclusion. In this work, we have investigated the magnetic field effects on
the smectic A liquid crystals by studying the complex de Gennes free energy. We
perform numerical simulations for the gradient flow of the free energy with strong
anchoring condition on the director and two boundary conditions on the smectic
order parameter: Dirichlet and natural boundary conditions. Employing the natural
boundary condition lowers the critical field for the undulations by allowing the
fluctuation of the smectic order density near the bounding cells. The director field
and layer structures with smectic order density are illustrated in various magnetic
field strengths by numerical simulations. We further analyze minimizers of the free
energy at the high field regime, which agrees the description of director and smectic
order parameter from numerical simulations.
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2000 CARLOS J. GARCÍA-CERVERA AND SOOKYUNG JOO
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