VSEPR Model

- The structure around a given atom is determined principally by minimizing electron pair repulsions.

Predicting Molecular Geometry

- The following rules and figures will help discern electron pair arrangements.

1. Draw the Lewis structure
2. Determine how many electrons pairs are around the central atom. Count a multiple bond as one pair.
3. Arrange the electrons pairs are shown in Table 8.8.

The direction in space of the bonding electron pairs gives the molecular geometry

Predicting Molecular Geometry

- The following rules and figures will help discern electron pair arrangements.

4. Obtain the molecular geometry from the directions of bonding pairs, as shown in Figures 10.3 and 10.8 .

Figure 10.3: Molecular geometries.

Figure 8.17: The bond angles in the $\mathrm{CH} 4, \mathrm{NH}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ molecules.

Figure 10.1: Molecular models of BF_{3} and PF_{3}.

BF_{3}

Figure 10.6: $\mathrm{H}-\mathrm{A}-\mathrm{H}$ bond angles in some molecules.

Figure 10.7: $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angles in molecules with carbon double bond.

$\mathrm{CH}_{2} \mathrm{O}$

$\mathrm{CH}_{2} \mathrm{CH}_{2}$

Predicting Molecular Geometry

- Two electron pairs (linear arrangement).

- You have two double bonds, or two electron groups about the carbon atom.
- Thus, according to the VSEPR model, the bonds are arranged linearly, and the molecular shape of carbon dioxide is linear. This molecule has an AX_{2} general formula with " 2 bonding pairs" \& no lone pairs. The bond angle is 180°.

Predicting Molecular Geometry

- Three electron pairs - (trigonal planar arrangement - AX_{3} with " 3 bonding pairs" $\&$ no lone pairs on the central atom).

- The three groups ${ }^{\circ}$ of electron ${ }^{\circ}$ pairs are arranged in a trigonal plane. Thus, the molecular shape of COCl_{2} is trigonal planar. Bond angle is 120°.

Predicting Molecular Geometry

- Three electron pairs - (trigonal planar arrangement - AX_{2} with " 2 bonding pairs" \& 1 lone pair on central atom).

- Ozone has three electron groups about the central oxygen. One group is a lone pair.
- These groups have a trigonal planar arrangement.

Predicting Molecular Geometry

- Three electron pairs (trigonal planar arrangement).

- Since one of the groups is a lone pair, the molecular geometry is described as bent or v shaped. When lone pairs are present in a bent molecule with bond angle $\geq \mathbf{1 2 0}^{\boldsymbol{}}$ very little distortion occurs.

Predicting Molecular Geometry

- Three electron pairs (trigonal planar arrangement).

- Note that the electron pair arrangement includes the lone pairs, but the molecular geometry refers to the spatial arrangement of just the atoms.

Predicting Molecular Geometry

- Four electron pairs (tetrahedral arrangement).

- Four electron pairs about the central atom lead to three different molecular geometries.

Predicting Molecular Geometry

- Four electron pairs (tetrahedral arrangement).

tetrahedral
Solid line - in plane of screen, dotted lines projecting back behind screen, dark wedge projecting toward you.

Predicting Molecular Geometry

- Four electron pairs (tetrahedral arrangement).

tetrahedral
trigonal pyramid

Figure 8.15:(a) The tetrahedral arrangement of electron pairs around the nitrogen atom in the ammonia molecule.
(b) Three of the electron pairs around nitrogen are shared with hydrogen atoms as shown and one is a lone pair. Although the arrangement of electron pairs is tetrahedral, as in the methane molecule, the hydrogen atoms in the ammonia molecule occupy only three corners of the tetrahedron. A lone pair occupies the fourth corner. (c) Note that molecular geometry is trigonal pyramidal, not tetrahedral.

(a)

(b)
(c)

Predicting Molecular Geometry

- Four electron pairs (tetrahedral arrangement).

trigonal pyramid

bent

Figure 8.16: (a) The tetrahedral arrangement of the four electron pairs around oxygen in the water molecule. (b) Two of the electron pairs are shared between oxygen and the hydrogen atoms and two are lone pairs. (c) The V-shaped molecular structure of the water molecule.

CONCEPT CHECK 10.1

An atom in a molecule is surrounded by four pairs of electrons: one lone pair and three bonding pairs. Describe how the four electron pairs are arranged about the atom. How are any three of these pairs arranged in space? What is the geometry about this central atom, taking into account just the bonded atoms?

4 pairs $=$ tetrahedral arrangement
Molecular geometry: $\mathbf{A X}_{3}$ with a lone pair trigonal pyramidal

Predicting Molecular Geometry

- Five electron pairs (trigonal bipyramidal arrangement).

- This structure results in both 90° and 120° bond angles.

Predicting Molecular Geometry

- Other molecular geometries are possible when one or more of the electron pairs is a lone pair.

ClF_{3} XeF_{2}

Predicting Molecular Geometry

- Other molecular geometries are possible when one or more of the electron pairs is a lone pair.

see-saw

T-shape

Predicting Molecular Geometry

- Other molecular geometries are possible when one or more of the electron pairs is a lone pair.

see-saw

T-shape

linear

Figure 8.20: Three possible arrangements of the electron pairs in the I^{-}ion.

$\mathbf{I}_{3}{ }^{-}(3 \times 7 \mathrm{e})+1 \mathrm{e}=22 \mathrm{e}$ or 11 pairs
I-I-I
Place 1 pair between each peripheral I and central I, 3 prs on each peripheral I, and 3 pairs on central I.

Predicting Molecular Geometry

- Other molecular geometries are possible when one or more of the electron pairs is a lone pair.

CIF_{3}
XeF_{2}
- Let's try their Lewis structures.

Predicting Molecular Geometry

- Six electron pairs (octahedral arrangement).
 XeF_{4}
square pyramid

Predicting Molecular Geometry

- Six electron pairs (octahedral arrangement).

square pyramid

square planar
- Figures $10.2,10.3$, and 10.8 summarize all the possible molecular geometries.

Figure 8.19: Possible electronpair arrangements for XeF4.

Dipole Moment and Molecular Geometry

- The dipole moment is a measure of the degree of charge separation in a molecule.
- We can view the polarity of individual bonds within a molecule as vector quantities.
- Thus, molecules that are perfectly symmetric have a zero dipole moment. These molecules are considered nonpolar.

Table 10.1 Relationship Between Molecular Geometry and Dipole Moment		
Formula	Molecular Geometry	Dipole Moment*
AX	Linear	Can be nonzero
AX_{2}	Linear	Zero
	Bent	Can be nonzero
AX_{3}	Trigonal planar	Zero
	Trigonal pyramidal	Can be nonzero
	T-shaped	Can be nonzero
AX_{4}	Tetrahedral	Zero
	Square planar	Zero
	Seesaw	Can be nonzero
AX_{5}	Trigonal bipyramidal	Zero
	Square pyramidal	Can be nonzero
AX_{6}	Octahedral	Zero
*All X atoms are assumed to be identical.		
Return to Slide 27		

Dipole Moment and Molecular Geometry

- However, molecules that exhibit any asymmetry in the arrangement of electron pairs would have a nonzero dipole moment. These molecules are considered polar.

