Chapter 3

Stoichiometry

Atomic Masses

- 1 atomic mass unit $(\mathrm{amu})=1 / 12$ of the mass of a ${ }^{12} \mathrm{C}$ atom so one ${ }^{12} \mathrm{C}$ atom has a mass of 12 amu (exact number).
- From mass spectrometry: ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}=$ 1.0836129 amu
- So the mass of a ${ }^{13} \mathrm{C}$ atom is $(1.0836129)(12$ $\mathrm{amu})=13.003355 \mathrm{amu}$
- $1 \mathrm{amu}=1.66053873 \times 10^{-27} \mathrm{~kg}$
- So the mass of a ${ }^{13} \mathrm{C}$ atom is:
$(13.003355 \mathrm{amu})\left(1.66053873 \times 10^{-27} \mathrm{~kg} / \mathrm{amu}\right)$

$$
=2.1592575 \times 10^{-26} \mathrm{~kg}
$$

Chemical Stoichiometry

- Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions.

Figure 3.1: (left) A scientist injecting a
sample into a mass spectrometer. (right)
Schematic diagram of a mass spectrometer.

Average Atomic Mass

-Elements occur in nature as mixtures of isotopes
-We will call the average atomic mass the
-atomic weight

- Atomic weight is based on the
relative abundance of isotopes
Carbon $=98.89 \%{ }^{12} \mathrm{C}=0.9889 \times 12 \mathrm{amu}=11.87$
$1.11 \%{ }^{13} \mathrm{C}=0.0111 \times 13.003 \mathrm{amu}=0.144$
$<0.01 \%{ }^{14} \mathrm{C}=$ neglect
Average carbon atomic weight $=12.01 \mathrm{amu}$

Figure 2.11: Diagram of a simple mass spectrometer.

Conceptual Problem 2.47: Green and brown spheres.
2.47 While traveling to a distant universe, you discover the hypothetical element, "X." You obtain a representative sample of the element and discover that it is made up of two isotopes, X-23 and X-25. To help your science team calculate the atomic mass of the substance, you send the following drawing of your sample with your report.

In the report, you also inform the science team that the gold atoms are X-23, which have an isotopic mass of 23.02 amu , and the green atoms are $X-25$, which have an isotopic mass of 25.147 amu . What is the atomic mass of element X?

X-23: $(5 / 20) \times 23.02 \mathrm{amu}=5.755$
$\mathrm{X}-25:(15 / 20) \times 25.147 \mathrm{amu}=\underline{18.860}$ 24.615

Average atomic weight $=24.615 \mathrm{amu}$

The Mole

- One mole is the number equal to the number of carbon atoms in exactly 12 grams of pure ${ }^{12} \mathrm{C}$.
- The number $=6.02214199 \times 10^{23}$
- 1 mole of anything $=6.022 \times 10^{23}$ units

Avogadro's number equals

6.022×10^{23} units

Molar Mass

- A substance's molar mass (or molecular weight) is the mass in grams of one mole of the compound.

$$
\begin{aligned}
& \cdot \mathrm{CO}_{2}=44.01 \text { grams per mole } \\
&=\frac{\mathrm{g} / \mathrm{mole}}{} \\
&=12.01 \\
& 2 \mathrm{C} 2 \times 16.00=\frac{32.00}{44.01} \mathrm{~g} / \mathrm{mole}
\end{aligned}
$$

TABLE 3.1	Comparison of 1 Mole Samples of Various Elements	
Element	Number of Atoms Present	Mass of Sample (g)
Aluminum	6.022×10^{23}	26.98
Copper	6.022×10^{23}	63.55
Iron	6.022×10^{23}	55.85
Sulfur	6.022×10^{23}	32.07
Iodine	6.022×10^{23}	126.9
Mercury	6.022×10^{23}	200.6

Determining the Moles of Atoms

How many moles of Se atoms are in 20.0 g of Se ?

$$
20.0 \mathrm{~g} \mathrm{Se} \times \frac{1 \mathrm{~mol} \mathrm{Se}}{78.96 \mathrm{~g} \mathrm{Se}}=0.253 \mathrm{~mol} \mathrm{Se} \text { atoms }
$$

How many atoms of Se are in 20.0 g of Se ?

$$
0.253 \mathrm{~mol} \mathrm{Se} \text { atoms } \times \frac{6.022 \times 10^{23} \mathrm{Se} \text { atoms }}{\mathrm{mol} \mathrm{Se} \text { atoms }}=1.53 \times 10^{23} \mathrm{Se} \text { atoms }
$$

Write the molecular formula and calculate the formula weight for hydrogen peroxide and nitric acid
a) $\begin{array}{ll}\mathrm{H}_{2} \mathrm{O}_{2} & 2 \mathrm{x} \text { at. wgt. } \mathrm{H}=2.02 \mathrm{amu} \\ & 2 \mathrm{x} \text { at. wgt. } \mathrm{O}=\underline{32.00 \mathrm{amu}}\end{array}$ 34.02 amu
b) $\mathrm{HNO}_{3} \quad 1 \mathrm{x}$ at. wgt. $\mathrm{H}=1.01 \mathrm{amu}$ 1 x at. wgt. $\mathrm{N}=14.01 \mathrm{amu}$ 3 x at. wgt. $\mathrm{O}=48.00 \mathrm{amu}$ 63.02 amu

Determining Molar Mass
What is the molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
$1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \times \underset{\mathrm{mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{\times \frac{2 \mathrm{~mol} \mathrm{Al}}{\mathrm{~mol} \mathrm{Al}}} \underset{\mathrm{ma}}{26.98 \mathrm{~g}}=53.96 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \times \underset{\mathrm{mol} \mathrm{Al}}{2}\left(\mathrm{SO}_{4}\right)_{3} \frac{3 \mathrm{~mol} \mathrm{~S}}{\times \frac{32.07 \mathrm{~g}}{\mathrm{~mol} \mathrm{~S}}}=96.21 \mathrm{~g}$
$\begin{aligned} 1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \times \underset{\text { mol Al }}{2}\left(\mathrm{SO}_{4}\right)_{3} & \frac{12 \mathrm{kol} .00 \mathrm{~g}}{\mathrm{~mol} \mathrm{O}} \end{aligned}=\underline{192.00 \mathrm{~g}}\left(\begin{array}{rl} \text { Molar mass of } \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} & =342.17 \mathrm{~g} \\ & =342.2 \mathrm{~g} \end{array}\right.$

Percent Composition

- Mass percent of an element:
$\operatorname{mass} \%=\frac{\text { mass of element in compound }}{m a s s} \times 100 \%$ mass of compound
- For iron in iron (III) oxide, $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$

Molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=159.69 \mathrm{~g}$
Mass of $\mathrm{Fe}=1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \times \underline{2 \mathrm{~mol} \mathrm{Fe}} \times 55.85 \mathrm{~g} \mathrm{Fe}=111.7 \mathrm{~g}$ mol Fe O_{3}
mass $\% \mathrm{Fe}=\frac{111.7}{159.69} \times 100 \%=69.95 \%$

Figure 3.7: A welder welding using an oxy-acetylene torch.
Photo courtesy of
PhotoDisc.

Figure 3.7: Photo of benzene in lab glassware.
Photo courtesy of
American Color.

benzene

Determining Chemical Formulas

- Determining the formula of a compound from the percent composition.
- The percent composition of a compound leads directly to its empirical formula.
- An empirical formula (or simplest formula) for a compound is the formula of the substance written with the smallest integer (whole number) subscripts.

Table 3.1
Molecular Models of Two Compounds That Have the Empirical Formula CH.
Molecular Models of Two Compounds That Have the Empirical Formula CH.
Although benzene and acetylene have the same empirical formula, they do not have the same molecular formula or Although b
structure.

Formulas

- molecular formula $=(\text { empirical formula })_{n}$

$$
[n=\text { integer }]
$$

- molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}=(\mathrm{CH})_{6}$ (benzene)
- molecular formula $=\mathrm{C}_{2} \mathrm{H}_{2}=(\mathrm{CH})_{2}$ (acetylene)
- empirical formula $=\mathrm{CH}$

Another example: hydrogen peroxide $\mathrm{OH}=$ empirical formula $\mathrm{H}_{2} \mathrm{O}_{2}=$ molecular formula

Figure 3.5: A schematic diagram of the combustion device used to analyze substances for carbon and hydrogen.

Determining Chemical

Formulas

- Determining the empirical formula from the percent composition.
- Benzoic acid is a white, crystalline powder used as a food preservative. The compound contains $68.8 \% \mathrm{C}, 5.0 \% \mathrm{H}$, and $26.2 \% \mathrm{O}$ by mass. What is its empirical formula?
- In other words, give the smallest whole-number ratio of the subscripts in the formula

$$
C_{x} H_{y} O_{z}
$$

Determining Chemical

Formulas

- Determining the empirical formula from the percent composition.
- For the purposes of this calculation, we will assume we have 100.0 grams of benzoic acid.
- Then the mass of each element equals the numerical value of the percentage.
- Since x, y, and z in our formula represent mole-mole ratios, we must first convert these masses to moles.

$$
C_{x} H_{y} O_{z}
$$

Benzoic Acid is a white, crystalline powder used as a food preservative
which is $68.8 \% \mathrm{C}, 5.00 \% \mathrm{H}$, and
$\mathbf{2 6 . 2 \%} \mathrm{O}$ by mass. What is its
empirical formula?
For 100.0 g of benzoic acid:

$$
\begin{aligned}
& 68.8 \mathrm{~g} \mathrm{C} \mathrm{x} \underset{12.0 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=5.73 \mathrm{~mol} \mathrm{C} \\
& 5.00 \mathrm{~g} \mathrm{H} \times \underset{1.01 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=4.95 \mathrm{~mole} \mathrm{H} \\
& 26.2 \mathrm{~g} \mathrm{O} \times \underset{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=1.638 \mathrm{~mol} \mathrm{O} \\
& \text { divide by } \\
& \text { formula is } \quad \mathrm{C}_{3.5} \mathrm{C}_{3.0} \mathrm{O} \text { or } \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}
\end{aligned}
$$

Empirical Formula Determination (when you are given mass percentages of elements)

- 1. Base calculation on 100 grams of compound.
- 2. Determine moles of each element in 100 grams of compound.
- 3. Divide each value of moles by the smallest of the values.
- 4. Multiply each number by an integer to obtain all whole numbers.

Another type of empirical formula problem....
1.0003 g of a compound containing only C, H and O are combusted to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. If 2.5224 g of CO_{2} and 0.4457 g of $\mathrm{H}_{2} \mathrm{O}$ are formed, what is the empirical formula of the compound?

1. Calculate the masses of C and H formed:
$2.5224 \mathrm{~g} \mathrm{CO}_{2} \times\left(1 \mathrm{~mol} \mathrm{CO}_{2} / 44.01 \mathrm{~g} \mathrm{CO}_{2}\right) \mathrm{x}\left(1 \mathrm{~mol} \mathrm{C} / \mathrm{mol} \mathrm{CO}_{2}\right) \mathrm{x}$ $(12.01 \mathrm{~g} \mathrm{C} / \mathrm{mol} \mathrm{C})=0.6883 \mathrm{~g} \mathrm{C}$
$0.4457 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \mathrm{x}\left(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 18.01 \mathrm{~g}\right) \times\left(2 \mathrm{~mol} \mathrm{H} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{x}$ $(1.008 \mathrm{~g} \mathrm{H} /$ mole H$)=0.04990 \mathrm{~g} \mathrm{H}$
2. Determine the mass of O by subtracting the masses of C and H from the mass of the compound reacted: $1.0003 \mathrm{~g}-(0.6883 \mathrm{~g} \mathrm{C}+0.04990 \mathrm{~g} \mathrm{O})=0.2621 \mathrm{~g} \mathrm{O}$

Determining Chemical Formulas

- Determining the molecular formula from the empirical formula.
- For example, suppose the empirical formula of a compound is $\mathrm{CH}_{2} \mathrm{O}$ and its molar mass is 60.0 $\mathrm{g} / \mathrm{mol}$.
- The molar mass of the empirical formula (the empirical weight) is only $30.0 \mathrm{~g} / \mathrm{mol}$.
- This would imply that the molecular formula is actually the empirical formula doubled, or

$$
\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Figure 3.6: Examples of substances whose empirical and molecular formulas differ. Notice that molecular formula $=($ empirical formula) $)_{n}$, where n is an integer.

Determining Chemical Formulas

- Determining the molecular formula from the empirical formula.
- An empirical formula gives only the smallest whole-number ratio of atoms in a formula.
- The molecular formula should be a multiple of the empirical formula (since both have the same percent composition).
- To determine the molecular formula, we must know the molar mass of the compound.

Chemical Equations

Chemical change involves a reorganization of the atoms in one or more substances.

Chemical Equation

- A representation of a chemical reaction:
- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
reactants
products
1 mole $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3$ moles $\mathrm{O}_{2} \rightarrow 2$ moles $\mathrm{CO}_{2}+3$ moles $\mathrm{H}_{2} \mathrm{O}$

1 molecule $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3$ molecules $\mathrm{O}_{2} \rightarrow$
2 molecules $\mathrm{CO}_{2}+3$ molecules $\mathrm{H}_{2} \mathrm{O}$

Figure 3.11: Steps in a stoichiometric calculation.

Grams of B

Calculating Masses of Reactants

 and Products- 1. Balance the equation.
- 2. Convert mass to moles.
- 3. Set up mole ratios.
- 4. Use mole ratios to calculate moles of desired substituent.
- 5. Convert moles to grams, if necessary.
3.79 The following reaction, depicted using molecular models, is used to make carbon tetrachloride, CCl_{4}, a solvent and starting material for the manufacture of fluorocarbon refrigerants and aerosol propellants.

Calculate the number of grams of carbon disulfide, CS_{2}, needed for a laboratory-scale reaction with 62.7 g of chlorine, Cl_{2}.
3.80 Using the following reaction (depicted using molecular models), large quantities of ammonia are burned in the presence of a platinum catalyst to give nitric oxide, as the first step in the preparation of nitric acid.

Suppose a vessel contains 12.2 g of NH_{3}, how many grams of O_{2} are needed for a complete reaction?

Limiting Reactant

The limiting reactant is the reactant that is consumed first, limiting the amounts of products formed.

Figure 3.9: Three different stoichiometric mixtures of methane and water, which react one-to-one.
$\mathbf{C H}_{4}+\mathbf{H}_{2} \mathrm{O} \rightarrow \mathbf{3 H}_{\mathbf{2}}+\mathbf{C O}$.

Figure 3.10: A mixture of CH_{4} and $\mathrm{H}_{2} \mathrm{O}$ molecules.

Figure 3.11: Methane and water have reacted to form products according to the equation

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2}+\mathrm{CO} .
$$

Figure 3.12: Hydrogen and nitrogen react to form ammonia according to the equation

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} .
$$

Solving a Stoichiometry Problem

- 1. Balance the equation.
- 2. Convert masses to moles.
- 3.Determine which reactant is limiting.
- 4.Use moles of limiting reactant and mole ratios to find moles of desired product.
- 5. Convert from moles to grams.
3.13 You react nitrogen and hydrogen in a container to produce ammonia, $\mathrm{NH}_{3}(g)$. The following figure depicts the contents of the container after the reaction is complete.

a. Write a balanced chemical equation for the reaction.
b. What is the limiting reactant?
c. How many molecules of the limiting reactant would you need to add to the container in order to have a complete reaction (convert all reactants to products)?
3.85 Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is prepared industrially from the gas-phase catalytic balanced reaction that has been depicted here using molecular models.

In a laboratory test, a reaction vessel was filled with 35.4 g CO and $10.2 \mathrm{~g} \mathrm{H}_{2}$. How many grams of methanol would be produced in a complete reaction? Which reactant remains unconsumed at the end of the reaction? How many grams of it remain?

3.18 A few hydrogen and oxygen molecules are introduced into a container in the quantities depicted in the following drawing. The gases are then ignited by a spark causing them to react and form $\mathrm{H}_{2} \mathrm{O}$.

a. What is the maximum number of water molecules that can be formed in the chemical reaction?
b. Draw a molecular level representation of the container's contents after the chemical reaction.

Calculating Percent Yield

$$
\text { Actual Yield } \times 100 \%=\% \text { Yield }
$$

Theoretical Yield

What is the percent yield of menthol if the theoretical yield is 30.0 g and the actual yield is 20.0 g ?

$$
\frac{20.0 \mathrm{~g}}{30.0 \mathrm{~g}} \times 100 \%=66.7 \%
$$

