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Our goals in preparing the first edition ofIntroduction  to Research in Education
were to provide a book that would enable readers to master the basic competencies
necessary (I) to understand and evaluate the research of others and (2) to plan and
conduct their own research with a minimum of assistance. The reception the first
edition has received is an indication that we have been reasonably successful in
achieving these goals. We hope both students and colleagues will find this second
edition even more useful. The latter have provided suggestions we found very
helpful in our attempts to provide a clearer and more  complete text. For example, in
response to many suggestions we have added study exercises for each chapter.

The sequence of topics discussed in this book begins with a general description of
the scientific approach and the relevance of this approach to the search for knowl-
edge in education. We assume that the reader is not familiar with the concepts,
assumptions, and terminology of the scientific approach; therefore, these are
explained as they are introduced. We have expanded the discussion of the roles
deductive reasoning and inductive reasoning play in science. From this basis we
proceed to suggestions for translating general problems into questions amenable to
scientific inquiry. A section on the identification of the population and variables of
interest has been added to the guidelines for developing problems for research.

Next we describe the role of previous research in the planning of a research
project. We have updated the sources of related literature with particular emphasis
on data bases that provide efficient access to relevant research and theory. We then
proceed to investigate the ways in which theory, experience, observations, and
related literature lead to hypothesis formation.

The more  useful descriptive and inferential statistical procedures are included,
with the emphasis on the role these procedures play in the research process and on
their interpretation. The role of systematic observation and measurement is
explored, and examples of useful measurement procedures are included. The chap-
ter on validity and reliability has been extensively revised.

Following this, we discuss the various types of research that have proven useful
in education, pointing out the advantages and disadvantages of various approaches
without espousing any particular one as being superior to the others. The chapter on
ex post facto research has been revised in order to show more clearly the strengths
and weaknesses of this type of research.

We conclude by presenting the general rules for interpreting the results of re-
search and the accepted procedures for reporting such results. We have added
sections on procedures for meeting ethical and legal requirements in research and on
the use of computers.

The focus of this edition remains the provision of a text designed for use in an
introductory course in educational research. Its aim is to familiarize the beginning
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researcher with the procedures for conducting an original research project. We focus
on the typical and practical problems encountered in research, beginning with the
formulation of the question and continuing through the preparation of the final
rt?p0*.

AlthoughIntroduction  to Research in Education is directed toward the beginning
student in educational research, it is hoped that others who wish to learn more  about
the philosophy, tools, and procedures of scientific inquiry in education will find it
useful. The principal criterion used in determining what to include has been the
potential usefulness of various aspects of educational research to the educational
practitioner.

To all of those teachers who used the first edition and have made very valuable
suggestions for improving and updating the second edition, we are deeply grateful.
We also thank Linda Burke for her many contributions. We are indebted to the
Literary Executor of the late Sir Ronald A. Fisher, F.R.S., for permission to reprint
Table A.5 in the Appendix from the book Statistical Methods for Research Work-
ers. We are also indebted to the aforementioned and to Dr. Frank Yates, F.R.S., for
permission to reprint Tables A.3 and A.7 (also in the Appendix) from their book
Sradstical  Tables for Biological, Agriculfural,  and Medical Research.

D. A.
L. c. .I.

A. R.
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Sampling and Inferential

The statistics discussed in the previous chapter are used for organizing, sum-
marizing, and describing data. In research, however, we often need to go further
than describing data. After making observations of a sample, we employ induction
or inference to generalize our findings to the entire population from which the
sample was drawn. To do this we need techniques that enable us to make valid
inferences from samples to whole populations.

Sampling

An important characteristic of inferential statistics is the process of going from the
part to the whole. For example, we might study a randomly selected group of 500
students attending a university in order to make generalizations about the entire
student body of that university.

The small group that is observed is called a sample and the larger group about
which the generalization is made is called apopulation. A population  is defined as
“all members of any well-defined class of people, events or objects.“l For exam-
ple, in a study where American adolescents constitute the population of interest, one
could define this population as all American boys and girls within the age range of
12-21. A sample is a portion of a population. For example, the students of
Washington High School in Indianapolis constitute a sample of American adoles-
cents. They are a portion of the large population in that they are both American
citizens and within the age range of 12-21.

Statistical inference is a procedure by means of which one estimatesparameters,
characteristics of populations, from statistics, characteristics of samples. Such esti-
mations are based on the laws of probability and are best estimates rather than
absolute facts. In any such inferences a certain degree of error is involved.

RATIONALE OF SAMPLING

Inductive reasoning is an essential part of the scientific approach. The inductive
method involves making observations and then drawing conclusions from these
observations. If one can observe all instances of a population, one can with confi-
dence base conclusions about the population on these observations (perfect induc-
tion). On the other hand, if one observes only some instances of a population then
one can do no more than infer that these observations will be true of the population



as a whole (imperfect induction). This is the concept of sampling, which involves
taking a portion of the population, making observations on this smaller group, and
then generalizing the findings to the large population.

Sampling is indispensable to the researcher. Usually the time, money, and effort
involved do not permit a researcher to study all possible members of a population.
Furthermore, it is generally not necessary to study all possible cases to understand
the phenomenon under consideration. Sampling comes to our aid by enabling us to
study a portion of the population rather than the entire population.

Since the purpose of drawing a sample from a population is to obtain information
concerning that population, it is extremely important that the individuals included in
a sample constitute a representative cross section of individuals in the population.
That is, samples must be representative if one is to be able to generalize with
confidence from the sample to the population. For example, the researcher might
assume that the students at Washington High School are representative of American
adolescents. However, this sample might not be representative if the individuals
who are included have some characteristics that differ from the parent population.
The location of their school, their socioeconomic background, their family situa-
tion, their prior experiences, and many other characteristics of this group might
make them unrepresentative of American adolescents. This type of sample would be
termed a biased sample. The findings of a biased sample cannot legitimately be
generalized to the population from which it is taken.

Steps in Sampling

The first essential in sampling is the identification of the population to be rep-
resented in the study. If the researcher is interested in learning about the teachers in
the St. Louis school system, all those who teach within that system constitute the
target population. In a study of the attitudes and values of American adolescents, the
target population would be all American boys and girls in the age range of 12-21,
granted that adolescence is operationally defined as the period between ages I2 and
21.

However, since it is usually not possible to deal with the whole of the target
population, one must identify that portion of the population to which one can have
access--called the accessible population-and it is from this group that the re-
searcher will take the sample for the study. The nature of the accessible population
is influenced by the time and resources of the researcher. In a typical attitude study,
for example, a researcher might designate all adolescent boys and girls in California
or just those in San Francisco as the accessible population.

From the accessible population, one selects a sample in such a way that it is
representative of that population. For example, the researcher would have to sample
from adolescents all over the state of California if California adolescents are
identified as the accessible population. Or if adolescents living in San Francisco are
the accessible population, then the sample would be drawn from this particular
group.
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How safely can one generalize from a sample to the target population? If the
sample selected is truly representative of the accessible population, then there is
little difficulty in making this first step in the generalization process. The general
principle is: If a sample has been selected so that it is representative of the accessible
population, findings from the sample can be generalized to that population. For
example, if one has selected a representative sample of California adolescents, then
one could make generalizations concerning the attitudes and values of all adolescent
boys and girls in California.

However, generalizing from the accessible population to the target population
typically involves greater  risk. The confidence that one can have in this step depends
upon the similarity of the accessible population to the target population. In the
example above, a researcher could have more  confidence making generalizations
about American adolescents if adolescents in several states throughout the country
are designated as the accessible population rather than those in California alone. In
this way all sections of the United States would be represented and a more  adequate
sampling of attitudes and values would be possible.

It is tme that one must make an inferential “leap of faith” when estimating
population characteristics from sample observations. The likelihood that such in-
ferences will be correct is largely a function of the sampling procedure employed.
Various sampling procedures are available to researchers for use in the selection of a
subgroup of a population that will represent that population well and will avoid bias.

RANDOM SAMPLING

The best known of the sampling procedures is random sampling. The basic
characteristic of random sampling is that all members of the population have an
equal and independent chance of being included in the sample. That is, for every
pair of elements X and Y, X’s chance of being selected equals Y’s chance, and the
selection of X in no way affects Y’s probability of selection. The steps in random
sampling are:

1.
2.
3.

Define the population.
List all members of the population.
Select the sample by employing a procedure where sheer chance determines
which members on the list are drawn for the sample.

The most systematic procedure for drawing a random sample is to refer to a table of
random numbers, which is a table containing columns of digits that have been
mechanically generated, usually by a computer, to assure a random order. Table



A.6 in the Appendix is an example. The first step in drawing a random sample from
a population is to assign each member of the population a distinct identification
number. Then the table of random numbers is used to select the identification
numbers of the subjects to be included in the sample.

Let us illustrate the use of this table to obtain a sample of adolescents from the
population of students attending Washington High School. First it is necessary to
enumerate all of the individuals included in the population. The principal’s office
could supply a list of all students enrolled in the school. One would then assign a
number to each individual in the population for identification purposes. Assuming
there were 800 students in the school, one might use the numbers 000, 001, 002,
003, , 199 for this purpose. Then one would enter a table of random numbers
to obtain numbers of three digits each, using only those numbers that are less than or
equal to 199. For each number chosen, the corresponding element in the population
falls in the sample. One continues the process until the desired number for the
sample has been chosen. It is customary,  in using a table of random numbers, to
determine by chance the point at which the table is entered. One way is to touch the
page blindly and begin wherever the page is touched.

The generally understood meaning of the word random  is “without purpose or by
accident.” However, random sampling is purposeful and methodical. It is apparent
that a sample selected randomly is not subject to the biases of the researcher. When
researchers employ this method, they are committing themselves to selecting a
sample in such a way that their biases are not permitted to operate. They are
pledging themselves to avoid a deliberate selection of subjects who will confirm the
hypothesis. They are allowing chance alone to determine which elements in the
population will he in the sample.

One would expect a random sample to be representative of the parent population
sampled. However, random selection, especially with small samples, does not
absolutely guarantee a sample that will represent the population well. Random
selection does guarantee that any differences between the sample and the parent
population are only a function of chance and not a result of the researcher’s bias.
The differences between random samples and their parent population are not sys-
tematic. For example, the mean reading achievement of a random sample of sixth
graders may he higher than the mean reading achievement of the parent population,
but it is equally likely that the mean for the sample will be lower than the mean for
the parent population. In other words, with random sampling the sampling errors  are
just as likely to be negative as they are to be positive.

Furthermore, statistical theorists have, through deductive reasoning, shown how
much one can expect the observations derived from random samples to differ from
what would be observed in the population. All of the procedures described in this
chapter have this aim in mind. Remember that characteristics observed in a
small sample are more  likely to differ from population characteristics than are
characteristics observed in a large sample. When random sampling is used, the
researcher can employ inferential statistics to estimate how much the population is
likely to differ from the sample. The inferential statistics in this chapter are all based



on random sampling and apply only to those cases in which randomization has been
employed.

Unfortunately, random sampling requires an enumeration of all the individuals in
a finite population before the sample can be drawn-a requirement that often pre-
sents a serious obstacle to the use of this method in practice.

STRATIFIED SAMPLING

When the population consists of a number of subgroups or strata that may differ
in the characteristics being studied, it is often desirable to use a form of sampling
called stratified sampling. For example, if one were conducting a poll designed to
assess opinions on a certain political issue, it might be advisable to subdivide the
population into groups on the basis of age or occupation because one would expect
opinions to differ systematically among various age or occupational groups. In
stratified sampling one first identifies the strata of interest and then draws a specified
number of subjects from each stratum. The basis for stratification may be geo-
graphical or it may involve characteristics of the population, such as income,
occupation, sex, age, year in college, or teaching level. In the study of adolescents,
for example, one may be interested not merely in surveying the attitudes of adoles-
cents toward certain phenomena, but also in comparing the attitudes of adolescents
who reside in small towns with those who live in medium-size and large cities. In
such a case, one would divide the adolescent population into three groups, based on
the size of the towns or cities in which they reside, and then randomly select
independent samples from each stratum.

An advantage of stratified sampling is that it enables the researcher to determine
to what extent each stratum in the population is represented in the sample. One may
either take equal numbers from each stratum or select in proportion to the sire of the
stratum in the population. This latter procedure is known as proportional stratified
sampling; that is, the stratum is represented in the sample in exact proportion to its
frequency in the total population. If 10 percent of the voting population are college
students, then 10 percent of one’s sample of voters to be polled would be taken from
this stratum. The procedure used will be chosen according to the nature of the
research question. If the emphasis is on the types of differences among the strata,
one selects equal numbers of cases from each. If the characteristics of the entire
population are the main concern, proportional sampling is more appropriate.

When applicable, stratified sampling may give us a more representative sample
than simple random sampling. In simple random sampling certain strata may by
chance be over- or underrepresented  in the sample. For example, in the simple
random sample of high school students it would be theoretically possible (though
highly unlikely) to obtain female subjects only. This could not happen, however, if
males and females are listed separately and a random sample is then chosen from
each group.

The major advantage of stratified sampling is that it guarantees representation of
defined groups in the population.



CLUSTER SAMPLING

As mentioned earlier, it is very difficult, if not impossible, to list all the members
of a target population and select the sample from among them. The population of
American high school students, for example, is so large that one cannot list all its
members for the purpose of drawing a sample. In addition, it would be a very
expensive undertaking to study a sample that is scattered all around the United
States. In this case it would be more  convenient to study subjects in naturally
occurring groups or clusters. That is, the researcher would choose a number of
schools randomly from a list of schools and then include all the students in those
schools in the sample. This kind of sampling is referred to as clusrer sampling since
the unit chosen is not an individual but a group of individuals who are naturally
together. These individuals constitute a cluster insofar as they arc alike with respect
to characteristics relevant to the variables of the study. Let us assume a public
opinion poll is being conducted in Atlanta. The investigator would probably not
have access to a list of the entire adult population; thus it would be impossible to
draw a simple random sample. A more  feasible approach would involve the selec-
tion of a random sample of, say, fifty blocks from a city map, and then the polling
of all the adults living on those blocks. Each block represents a cluster of subjects,
similar in cenain  characteristics associated with living in proximity.

It is essential that the clusters actually included in the study be chosen at random
from a population of clusters. If only a single cluster were used-for example, one
elementary school in a large city-x could not generalize to the population.
Another procedural requirement is that once a cluster is selected, all the members of
the cluster must be included in the sample. The sampling error  in a cluster sample is
much greater than in true random sampling.

SYSTEMATIC SAMPLING

Still another form of sampling is called systematic sampling. This procedure
involves drawing a sample by taking every kth case from a list of the population.

One first decides how many subjects one wants in the sample (n).  Since one
knows the total number of members in the population (N), one simply divides N by
n and determines the sampling interval (k) to apply to the list. The first member is
randomly selected from the first k members of the list and then every kth member of
the population is selected for the sample. For example, let us assume a total popula-
tion of 500 subjects and a desired sample size of 50;  thus, k = N/n = 500150  = 10.

One would start near the top of the list so that the first case could be randomly
selected from the first ten cases, and then every tenth case thereafter would be
selected. Say the third name OI number on the list was the first to be selected. One
would then add the sampling interval k, or 10, to 3-and thus the thirteenth person
falls in the sample, as does the twenty-third, and so on-and would continue adding
the constant sampling interval until the end of the list is reached.

Systematic sampling differs from simple random sampling in that the various



choices are not independent. Once the first case is chosen, all subsequent cases to be
included in the sample are automatically determined.

If the original population list is in random order, systematic sampling would yield
a sample that could be statistically considered a reasonable substitute for a random
sample. However, if the list is alphabetical, for example, it is possible that every kth
member of the population might have some unique characteristic that would affect
the dependent variable of the study and thus yield a biased sample. Systematic
sampling from an alphabetical list would probably not give a representative sample
of various national groups because certain national groups tend to cluster under
certain letters and the sampling interval could omit them entirely or at least not
include them to an adequate extent.

It should be noted that the various types of sampling that have been discussed are
not mutually exclusive. Various combinations may be used. For example, one could
use cluster sampling if one is studying a very large and widely dispersed population.
At the same time, one may be interested in stratifying the sample to answer ques-
tions regarding its different strata. In this case one would stratify the population
according to the predetermined criteria and then randomly select the clusters of
subjects from among each stratum.2

THE SIZE OF THE SAMPLE

One of the first questions to be asked concerns the number of subjects that need to
be included in the sample. Technically, the sire of the sample depends upon the
precision the researcher desires in estimating the population parameter at a particu-
lar confidence level. There is no single rule that can be used to determine sample
size. An estimation of required sample size can be calculated algebraically if one
defines precisely the variance of the population, the expected difference, and the
desired probabilities of Type I and Type II errors  (see 179-80). A number of
statistics texts describe this procedure.

The best answer to the question of size is to use as large a sample as possible. A
larger sample is much more  likely to be representative of the population. Further-
more, with a large sample the data are likely to be more  accurate and precise: which
is to say, the larger the sample, the smaller the standard error. In general, the
standard error  of a sample mean is inversely proportional to the square root of n.
Thus in order to double the precision of one’s estimation, one must quadruple the
sample size.

Some authors suggest that one include at least thirty subjects in a sample since
this number permits the use of large sample statistics. In experimental research, one
should select a sample that will permit at least thirty in each group. Descriptive
research typically uses larger samples; it is sometimes suggested that one select 10
to 20 percent of the accessible population for the sample.
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It must be emphasized, however, that size alone will not guarantee accuracy.
Representativeness is the most important consideration in selecting a sample. A
sample may be large and still contain a bias. The latter situation is well illustrated by
the Literary Digest poll of 1936, which predicted the defeat of President Roosevelt.
Although the sample included approximately two and a half million respondents, it
was not representative of the voters; and thus an erroneous conclusion was reached.
The bias resulted from the selection of respondents for the poll from automobile
registrations, telephone directories, and the magazine’s subscription lists. These
subjects would certainly not be representative of the total voting population in 1936.
Also, since the poll was conducted by mail, the results were biased by differences
between those who responded and those who did not. Thus the researcher must
recognize that sample size will not compensate for the bias that may be introduced
through faulty sampling techniques. Representativeness must remain the prime goal
in sample selection.

THE CONCEPT OF SAMPLING ERROR

When an inference is made from a sample to a population a certain amount of
error is involved because even random samples can be expected to vary from one to
another. The mean intelligence score of one random sample of fourth graders may
be different from the mean intelligence score of another random sample of fourth
graders from the same population. Such differences, called sampling errors, result
from the fact that one has observed a sample and not the entire population.

Sampling error  is defined as the difference between a population parameter and a
sample statistic. For example, if one knows the mean of the entire population
(symbolized p) and also the mean of a randomqample  (symbolized .@ from that
population, the difference between these two, X ~ p, represents sampling error
(symbolized e). Thus, e = x - CL. For example, if we know that the mean intelli-
gence score for a population of 10,000 fourth graders is p = 100 and a particular
random sample of 200 has a mean of ,? = 99, then the sampling error is
,? - p = 99 100 = I Because we usually depend on sample statistics to esti-
mate population parameters, the notion of how samples are expected to vary from
populations is a basic element in inferential statistics. However, instead of trying to
determine the discrepancy between a sample statistic and the population parameter
(which is not often known), the approach in inferential statistics is to estimate the
variability that could be expected in the statistics from a number of different random
samples drawn from the same population. Since each of the sample statistics is
considered to be an estimate of the same population parameter, then any variation
among sample statistics must be attributed to sampling error.

THE LAWFUL NATURE OF SAMPLING ERRORS

Given that random samples drawn from the same population will vary from one
another, is using a sample to make inferences about a population really any better



than just guessing? Yes, it is, because sampling errors behave in a lawful and
predictable manner. The laws concerning sampling error have been derived through
deductive logic and have been confirmed through experience.

Although we cannot predict the nature and extent of the error in a single sample,
we can predict the nature and extent of sampling errors in general. Let us illustrate
this with reference to sampling errors connected with the mean.

Sampling Errors of the Mean

Some sampling error can always be expected when a sample mean X is used to
estimate a population mean &.  Although, in practice, such an estimate is based on a
single sample mean, assume that one drew several random samples from the same
population and computed a mean for each sample. We would find that these sample
means would differ from one another and would also differ from the population
mean (if it were known). This variation among the means is due to the sampling
error associated with each random sample mean as an estimate of the population
mean. Sampling errors of the mean have been studied carefully and it has been
found that they follow regular laws.

The Expected Mean of Sampling Errors Is Zero. Given an infinite number of
random samples drawn from a single population, the positive errors  can be expected
to balance the negative errors so that the mean of the sampling errors will be zero.
For example, if the mean height of a population of college freshmen is 5 feet 9
inches, and several random samples are drawn from that population, we would
expect some samples to have mean heights greater than 5 feet 9 inches and some to
have mean heights less than 5 feet 9 inches. In the long run, however, the positive
and negative sampling errors will balance. If we had an infinite number of random
samples of the same sire, calculated the mean of each of these samples, then
computed the mean of all these means, the mean of the means would be equal to the
population mean.

Since positive errors  equal negative errors, a single sample mean is as likely to
underestimate a population mean as to overestimate it. Therefore, we can justify
saying that a sample mean is an unbiased estimate of the population mean, and is a
reasonable estimate of the population mean.

Sampling Error Is an Inverse Function of Sample Size. As the size of a sample
increases there is less fluctuation from one sample to another in the value of the
mean. In other words, as the sire of a sample increases the expected sampling error
decreases. Small samples are more prone to sampling error than large ones. One
would expect the means based on samples of 10 to fluctuate a great deal more than
the means based on samples of 100. In our height example it would be much more
likely that a random sample of four had three above-average freshmen and only one
below-average freshman than that of a random sample of 40 had 30 above average
and ten below. As sample size increases the likelihood that the mean of the sample
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is near the population mean also increases. There is a mathematical relationship
between sample size and sampling error. We will show later how this relationship
has been incorporated into inferential formulas.

Sampling Error Is a Direct Function of the Standard Deviation of the Popula-
tion. The more  spread or variation we have among members of a population, the
more  spread or variation we expect in sample means. For example, the mean
weights of random samples of 25 each selected from a population of professional
jockeys would show relatively less sampling error  than the mean weights of samples
of 25 each selected from a population of school teachers. The weights of profes-
sional jockeys fall within a narrow range, the weights of school teachers do not.
Therefore, for a given sample sire, the expected sampling error  for teachers’
weights would be greater than the expected sampling error  for jockeys’ weights.

Sampling Errors Are Distributed in a Normal OT Near Normal Manner around
the Expected Mean of Zero. Sample means near the population mean will occur
more  frequently than sample means far from the population mean. As we move
farther and farther from the population mean we find fewer and fewer sample means
occurring. Both theory and experience have shown that the means of random sam-
ples are distributed in a normal or near normal manner around the population mean.

Since a sampling error  in this case is the difference between a sample mean and
the population mean, the distribution of sampling errors  is also normal or near
normal in shape. The two distributions are by definition identical except that the
distribution of sample means has a mean equal to the population mean while the
mean of the sampling error is zero.

The distribution of sample means will resemble a normal curve even when the
population from which the samples are drawn is not normally distributed. For
example, in a typical elementary school we find about equal numbers of children of
the various ages included, so a polygon of the children’s ages would be basically
rectangular. If we take random samples of 40 each from a school with equal
numbers of children aged 6 through 11 we would find many samples with means
near the population mean of 8.5, sample means of about 8 or 9 would be less
common, and sample means as low as 7 or as high as IO would be rare.

Standard Error of the Mean

Since the extent and the distribution of sampling errors  can be predicted, we can
use sample means with predictable confidence to make inferences concerning
population means. However, we need an estimate of the magnitude of the sampling
error  associated with the sample mean when it is used as an estimate of the popula-
tion mean. An important tool for this purpose is the standard error of the mean.

It has been stated that sampling error manifests itself in the variability of sample
means. Thus, if one calculates the standard deviation of a collection of means from
random samples from a single population, one would have an estimate of the
amount of sampling error. It is possible, however, to obtain this estimate on the



basis of only one sample. We have seen that two things affect the size of sampling
error, the size of the sample and the standard deviation in the population. When
these two things are known, one can predict the standard deviation of sampling
errors. This expected standard deviation of sampling errors of the mean is called the
standard error of the mean and is represented by the symbol gx. It has been shown
through deductive logic that the standard error of the mean is equal to the standard
deviation of the population ((T)  divided by the square root of the number in each
sample (&).  In formula form:

vx = OT
6 (6.1)

where:
mF = standard error of the mean

c~ = standard deviation of the population
n = number in each sample

In chapter 5 we saw that standard deviation (u) is an index of the degree of
spread among individuals in a population. In the same way standard error of the
mean (oi)  is an index of the spread expected among the means of samples drawn
randomly from a population. As we will see, the interpretation of cr and v? is very
similar.

Since the means of random samples have approximately normal distributions we
can also use the normal curve model to make inferences concerning population
means. Given that the expected mean of sample means is equal to the population
mean, and that the standard deviation of these means is equal to the standard error of
the mean, and that the means of random samples are distributed normally, one can
compute a z-score for a sample mean and refer that z to the normal curve table to
approximate the probability of a sample mean occurring through chance that far or
farther from the population mean. The z is derived by subtracting the population
mean from the sample mean and then dividing this difference by the standard error
of the mean. In formula form this becomes:

To illustrate, let us consider a college admissions officer who wonders if his
population of applicants is average or below average on the College Board exami-
nation. The national mean for College Board scores is 500 and the standard devia-
tion is 100. He pulls a random sample of 64 from his population and finds the mean
of the sample to be 470. He asks the question, “How probable is it that a random
sample of 64 with a mean of 470 would be drawn from a population with a mean of
500?” Using formula (6.1), the admissions officer calculates the standard error of
the mean as 12.5:



= 12.5

Calculating the z-score for his sample mean with formula (6.2) he has:

470 - 500
12.5

= ~2.4

Thus, his sample mean deviates from the population mean by 2.4 standard error
units. What is the probability of having a sample mean that deviates by this amount
(2.4~~‘~)  OI more  from the population mean? It is only necessary to refer to the
normal curve in order to express this deviation (z) in terms of probability. Referring
az of -2.4 to the normal curve table, one finds that the probability of az that low or
lower is .0082.  This means that az-score that low or lower would occur by chance
only about 8 times in 1,000. Since the probability of getting a sample mean that far
from the population mean is remote, he concludes that his sample mean probably
did not come from a population with a mean of 500 and therefore the mean of his
population, applicants to his college, is probably less than 500.

The Strategy of Inferential Statistics

Inferential statistics is the science of making reasonable decisions with limited
information. We use what we observe in samples and what is known about sampling
error to reach fallible but reasonable decisions about populations. A basic tool of
inferential statistics is the null hypothesis.

NULL HYPOTHESIS

Suppose we have 100 fourth graders available to participate in an experiment
concerning the teaching of certain number concepts. We randomly assign 50 stu-
dents to be taught these concepts by Method A and the other 50 to be taught by
Method B. We arrange their environment in such a way that the two groups differ
only in method of instruction. At the end of the experiment we administer an
examination that is considered to be a suitable operational definition of mastery of
the number concepts of interest. We find that the mean for those students taught by



Method B is higher than the mean for those taught by Method A. How do we
interpret this difference?

Assuming we have been careful to make the learning conditions of the two groups
equivalent except for the method of teaching, we could account for the difference by
declaring that (1) the method of teaching caused the difference or (2) the difference
occurred by chance. Even though the subjects were randomly assigned to the treat-
ments, it is possible that through chance the Method B group had students who were
more intelligent, more highly motivated, or for some other reason were more likely
to learn the number concepts than the students in the Method A group, no matter
how they were taught.

The difference between the groups therefore could be a result of a relationship
between the variables-method of teaching and mastery of the concepts-r it could
be the result of chance alone (i.e., sampling error). How are we to know which
explanation is correct? In the ultimate sense we cannot know. What we do, then, is
estimate the likelihood of chance alone being responsible for the observed differ-
ence and determine which explanation to accept as a result of this estimate.

The chance explanation is known as the null hypothesis, which, as you will recall
from chapter 4, is a statement that there is no actual relationship between variables
and that any observed relationship is only a function of chance. In our example the
null hypothesis would state that there is no relationship between teaching method
and mastery of the number concepts.

Another way of stating the null hypothesis in our example is to declare that the
mean for all fourth graders taught by Method A is equal to the mean for all fourth
graders taught by Method B. In formula form, using the symbol p for population
mean, this statement becomes

Ho: PA = PA

where
Ho = the null hypothesis
/.LL~ = the mean of all fourth graders taught by Method A
/.LL~  = the mean of all fourth graders taught by Method B

Note that the assumption is made that the 50 pupils taught by Method A are a
sample of all fourth graders who might be taught by Method A, and the 50 pupils
taught by Method B are a sample of all those who might be taught by Method B.
The investigator hopes to use the data from the experiment to infer what would be
expected when other fourth graders are taught by Methods A or B.

In interpreting the observed difference between the groups, the investigator must
choose between the chance explanation (null hypothesis) and the explanation that
states that there is a relationship between variables (research hypothesis)-and must
do so without knowing the ultimate truth concerning the populations of interest.
This choice is based on incomplete information and is therefore subject to possible
error.



TYPE I AND TYPE II ERRORS

The investigator will either retain or reject the null hypothesis. Either decision
may be right or wrong. If the null hypothesis is true, the investigator is correct in
retaining it and in error in rejecting it. The rejection of a true null hypothesis is
labeled a Type I error.

If the null hypothesis is false, the investigator is in error in retaining it and correct
in rejecting it. The retention of a false null hypothesis is labeled a Type II error. The
four possible states of affairs are summarized in Table 6. I.

Table 6.1 Schematic Representation of Type I and Type II Errors

The real situation (unknown to the
investigator) is that the null hypothesis
IS:

true false

true

The investigator, after making a test of
significance, concludes that the null
hypothesis is: false

IS clxrect

Let us consider some possible consequences of the two types of errors in our
example.

TYPO  I
The investigator declares that there is a relationship between teaching method and

the mastery of the numerical concepts and therefore recommends Method B as the
better method. Schools discard textbooks and other materials based on Method A
and purchase materials based on Method B. In-service training is instituted to train
teachers to teach by Method B. After all this expenditure of time and money,
the schools do not observe an increase in mastery of the numerical concepts.
Subsequent experiments do not produce the results observed in the original investi-
gation. Although the ultimate truth or falsity of the null hypothesis is still unknown,
the evidence supporting it is overwhelming. The original investigator is embar-
rassed and humiliated.

Type II
The investigator concludes that the difference between the two groups may be

attributed to luck and that the null hypothesis is probably true. He declares that one
method is as good as the other.



Subsequent investigators conclude that Method B is better than Method A, and
schools that change from Method A to Method B report impressive gains in student
mastery Although the ultimate truth still remains unknown, a mountain of evi-
dence supports the research hypothesis. The original investigator is embarrassed
(but probably not humiliated).

Type I errors typically lead to changes that are unwarranted. Type II errors
typically lead to a maintenance of the status quo when a change is warranted. The
consequences of a Type I error ax generally considered more serious than the
consequences of a Type II error, although there are certainly exceptions to this.

Level of Significance

Recall that all scientific conclusions are statements that have a high probability of
being correct, rather than statements of absolute truth. How high must the probabil-
ity be before an investigator is willing to declare that a relationship between vari-
ables exists? In other words, how unlikely must the null hypothesis be before one
rejects it? The consequences of rejecting a true null hypothesis, a Type I error, vary
with the situation. Therefore, investigators usually weigh the relative consequences
of Type I and Type II errors and decide, before conducting their experiments, how
strong the evidence must be before they would reject the null hypothesis. This
predetermined level at which a null hypothesis would be rejected is called the level
of signijicance.

Of course, one could avoid Type I errors by always retaining the null hypothesis
or avoid Type II errors by always rejecting it. Neither of these alternatives is
productive. If the consequences of a Type I error would be very serious but a Type
II error would be of little consequence, the investigator might decide to risk the
possibility of a Type I et+or only if the estimated probability of the observed
relationship’s being due to mere luck is one chance in a thousand or less. This is
called testing the hypothesis at the ,001  level of significance. In this case the
investigator is being very careful not to declare that a relationship exists when there
is no relationship. However, this decision means the acceptance of a high probabil-
ity of a Type II error, declaring there is no relationship when in fact a relationship
does exist.

If the consequences of a Type I error are judged to be not serious, the investigator
might decide to declare that a relationship exists if the probability of an observed
relationship’s being due to mere luck is one chance in ten or less. This is called
testing the hypothesis at the (10 level of significance. Here the investigator is taking
only moderate precautions against a Type I error, yet is not taking a great risk of a
Type II error.

The level of significance is the probability of a Type I error that an investigator is
willing to risk in rejecting a null hypothesis. If an investigator sets the level of
significance at .Ol,  it means that the null hypothesis will be rejected if the estimated
probability of the observed relationship’s being a chance occurrence is one in a
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hundred. If the level of significance is set at .OOOl,  the null hypothesis will be
rejected only if the estimated probability of the observed relationship’s being a
function of mere chance is one in 10,000 or less. The most commonly used levels of
significance in the field of education are the .05  and the .Ol levels.

Traditionally, investigators determine the level of significance after weighing the
relative seriousness of Type I and Type II errors, but before running the experiment.
If the data derived from the completed experiment indicate that the probability of the
null hypothesis being true is less than the predetermined acceptable probability, the
results are declared to be statistically significant. If the probability is greater than the
predeternCned  acceptable probability, the results are described as nonsig-
nificant-that is, the null hypothesis is retained.

The familiar meaning of the word significant is “important” or “meaningful.”
In statistics this word means “less likely to be a function of chance than some
predetermined probability.” Results of investigations can be statistically significant
without being inherently meaningful or important.

There are numerous ways of testing a null hypothesis. Among the most widely
used are the t-test, analysis of variance, and the chi-square test.

Significance of the Difference between Two Means

THE t-TEST

We have shown that it is possible to make use of the normal probability curve to
compare the mean of a sample with the population mean by using the z-score to see
whether or not the sample mean is representative of the population mean. To
demonstrate that point, we found the standard error of the mean for the sample
distribution, then used the formula (2 ~ EL)/ wF. Implied in using this procedure is
the appropriateness of the normal probability curve.

However, it has been shown mathematically that the normal curye is appropriate
for hypothesis testing only when the population standard deviation is known. In
most research situations the population standard deviation is not known and must be
estimated by the formula

where
s = estimated population standard deviation

x2 = sum of the squared deviations scores, x(X - x)”
n = number in the sample

When this estimate (s) is substituted for the population standard deviation (a) in the



calculation of the standard error of the mean, it is customary to express Formula
(6.1) as

When S; is used instead of vi each finite sample size has its own unique probabil-
ity distribution. These distributions are known as the t-curves. These distributions
become more and more similar to the normal curve as the size of the sample
increases. A series of distributions called t-distributions has been developed for
testing hypotheses concerning the population mean using small samples. When the
sample size is infinite, the t-distribution is the same as the normal distribution.
As the sample size becomes smaller, the t-distribution becomes increasingly differ-
ent from the z-distribution. For our purposes it is not necessary to know how to
calculate r-distributions since the most frequently needed results of these calcula-
tions are to be found in Table A.3 in the Appendix. The t-curve does not approach
the base line as rapidly as does the normal curve. Some of the t-curves are shown in
Figure 6.1 along with the normal curve, the solid line labeled “df = CD,”

- df-

-------- df -25
--_-- df -_9

2 --__ df -1

@ 2 -
L

.1 -

3 -2 -1 0 +1 +2 +3 +4
Figure 6.1 i-curves for various Degrees  of Freedom

The r-curves arc labeled according to their degrees of freedom, abbreviated “df.”
Before further discussion of the characteristics of ~-curves, let us turn our attention
to the concept of degrees of freedom.

Degrees of Freedom

The number of degrees of freedom refers to the number of observations free to
vary around a constant parameter. To illustrate the general concept of degrees of
freedom, suppose a teacher asks a student to name any five numbers that come into
his head. The student would be free to name any five numbers he chooses. We
would say that the student has five degrees of freedom. Now suppose the teacher
tells the student to name five numbers but to make sure that the mean of these five



numbers is equal to 20. The student now is free to name any numbers he chooses for
the first four, but for the last number he must name the number that will make the
total for the five numbers 100 in order to arrive at a mean of 20. If the student
names, as his first four numbers, 16, 0.5, 1,000, and -65, then his fifth number
must be -851.5.  The student has five numbers to name and one restriction, so his
degrees of freedom are five minus one equals four. We can show this in formula
form as

df=n-J
=5-l

4

Now, suppose the teacher asks the student to name seven numbers in such a way
that the first three have a mean of 10 and all seven have a mean of 12. Here we have
seven numbers and two restrictions, so

df=n-2
=I-2

5

The concept of degrees of freedom is involved in most of the procedures in
inferential statistics. There is an appropriate method of computing the degrees of
freedom associated with each procedure.

The t-Test for Independent Samples
Research workers often draw two random samples from a population and assign a

specific experimental treatment to each group. After being exposed to this treat-
ment, the two groups are compared with respect to certain characteristics in order to
find the effect of the treatments. A difference might be observed between the two
groups after such treatments, but this difference might be statistically non-
significant-that is, attributable to chance. The index used to find the significance of
the difference between the means of the two samples in this case is called the t-test
for independent samples. These samples are referred to as independent because they
are drawn independently from a population without any pairing or other relationship
between the two groups.

Let us use an example. Suppose a researcher is interested in finding out whether
stress affects problem-solving performance. The first step is to randomly select two
groups of 15 subjects from among the students in a course. The scores (X) on
the dependent variable problem-solving performance are shown in Table 6.2, fol-
lowed by the deviation scores (x) and the squared deviation scores (x’). Since the
members of the two groups are selected and assigned randomly, the mean perfor-
mances of the two groups in a problem-solving task should not significantly differ
prior to the treatment. After the treatment, however, the mean performance of the
two groups should differ significantly if stress is actually related to problem-solving
performance.



Table 6.2 The Computation of the r-Value for Two Sample Means

xx, = 210
n, 15
x, = 14

+4 16
+3 9
+2 4
+2 4
+2 4
+1 I
+I 1
+I I

0 0
0 0

-1 I
- 2 4
- 3 9
- 4 16
- 6 36

Xx,? = 106

13
12
12
11
II
1,
10
10
10
IO

9
9
8
7
7

X%2

9
4
4
I
I
1
0
0
0
0

1
I
4
9
9

The data presented in Table 6.2 are the performance scores of the members of the
two groups, one of which worked under stress conditions and the other, under
relaxed (nonstress) conditions. The table shows that the mean performance score of
the subjects in the stress group is 10 and the mean performance score of the
nonstress group is 14. Clearly there is a difference. Now we need to determine
whether or not this difference could easily occur by chance.

In order to do this we must estimate how much difference between the groups
would be expected through chance alone under a true null hypothesis. An appro-
priate procedure for doing this is to calculate the standard error of the difference
between fwo means (s,-,_,-).  The formula for this in the case of independent
samples is

where
Ji,-z, = the standard error of the difference between two means

n, = the number of cases  in Group 1
n2 = the number of cases  in Group 2



Zx,’ = the sum of the squared deviation scores in Group 1
Zx,* = the sum of the squared deviation scores in Group 2

The standard error of the difference between two means is sometimes referred to
as the error term for the t-test. In our example this would be calculated as follows:

=XiTi
= 0.84

This calculation tells us the difference that would be expected through chance
alone if the null hypothesis is true. In other words, the value 0.84 is the difference
we would expect between the mean performance scores for our two groups if they
are drawn at random from a common population and are rwf subjected to different
treatments. Given an infinite number of samples in such circumstances, we would
expect to observe a difference of less than 0.84 in 68 percent of the calculations of
the differences between such random groups and a value of more  than 0.84 in the
other 32 percent. (It is beyond the scope of this text to discuss the reason why the
apphcation of the formula for the standard error of the difference between means
yields the appropriate estimated difference that would be due to chance.)3

In our example for the data in Table 6.2 we should expect a difference of 0.84
through chance under a true null hypothesis. We observed a difference of 4.0. Is the
observed difference sufficiently greater than the expected difference to enable us to
reject the null hypothesis?

To answer this question we first make a ratio of the two numbers. This ratio is
called the t-ratio. Its formula is

where
..?, - yz = the observed difference between two means

s?,_~, = the standard error of the difference between two means (expected differ-
ence between the two means when the null hypothesis is true)

We can write the r-ratio formula in more complete form by including the formula
for the standard error for the difference between two means:



In our example the value of the t-ratio is

Our observed difference is 4.16 times as large as the difference expected under a
true null hypothesis. Is this large enough to reject the null hypothesis at the .05
level? To answer this we need only calculate the degrees of freedom and consult the
t-table.

The degrees of freedom for an independent f-test are the number of cases in the
first group plus the number of cases in the second gioup minus 2.

df=n,+nz-2

In our example we have 15 + 15 2 = 28 degrees of freedom. We can now use
Table A.3 in the Appendix to determine the significance of our results. The first
column in this table is labeled “Degrees of Freedom.” One finds the appropriate
row in the table by locating the degrees of freedom in one’s study. For our example
we would consult the row for 28 degrees of freedom. The remaining columns show
the t-values associated with certain probabilities. In the row for 28 degrees of
freedom we find 1.701 in the column labeled .l, which tells us that with a true null
hypothesis and 28 degrees of freedom a t-ratio of + 1.701 or more or ~ 1.701 or less
will occur by chance one time in ten. The number 2.048 in the column labeled .05
indicates that under a true  null hypothesis and 28 degrees of freedom a t-ratio of
i2.048  or more will occur by chance 5 percent of the time.

Our observed ratio of 4.76 is greater than 2.048, which means that the difference
between our groups is greater than the value required to reject the null hypothesis at
the .OS level of significance. The estimated probability of the null hypothesis being
true is less than 5 percent (p < .05).  Although we do not know for certain that the
variables S~MSS  and problem-solving performance are related, the evidence is
significant enough according to our previously set criteria to enable us to conclude
that the observed relationship is not just a chance occurrence. If the observed t-ratio
had been less than 2.048, we would have concluded that the evidence was not good
enough to lead us to declare that a relationship exists between the variables. In other
words, we would have retained the null hypothesis.

Notice that as we proceed from left to right in the t-table we find the t-values
required for rejecting the null hypothesis at increasingly rigorous levels of
significance. For 28 degrees of freedom a value of 2.763 or greater would lead to the
rejection of a null hypothesis at the .Ol level. A value of 3.674 or greater would lead
to the rejection of the null hypothesis at the ,001  level. So our value of 4.16 is
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significant not only at the .OS level @ < .05)  but also at the .Ol level (p < .Ol)  and
the ,001  level (p < ,001).

The t-Test for Nonindependent Samples

So far our discussion has centered around comparing the means obtained from
two independent samples. In an independent sample each member is chosen ran-
domly from the population, and the composition of one group has no bearing on the
composition of the other group. Sometimes, however, investigators may wish to
match the subjects of their two groups on some qualities that are important to the
purpose of their research, or they may wish to compare the means obtained by the
same group under two different experimental conditions. In such cases the groups
are no longer independent, inasmuch as the composition of one group is related to
the composition of the other group. Also we would expect the dependent variable
scores to be correlated. Therefore the f-test for nonindependent or correlated means
must be used. The measure to be analyzed by the nonindependent r-test is the
difference between the paired scores.

Let us consider an example. Suppose we wish to know whether taking a research
course affects the attitudes of the students toward research. To investigate this we
select a research class and obtain attitude measures toward research from the stu-
dents on the first and last days of class. Let us suppose we have collected such data
and the results are as presented in Table 6.3. Columns (2) and (3) show the scores of
each student in the first and second tests. Column (4) presents the difference be-
tween the first and second scores of each student. The sum of these differences
amounts to +30.  The mean of the differences, +2,  is found by dividing +30(X))
by n, the number of paired observations, or 15. Column (5) shows the squares
of the differences.

The formula for the nonindependent f-test is

(6.7)

f = the t-value for nonindependent (correlated) means
D = the difference between the paired scores
i? = the mean of the differences

20' = the sum of the squared difference scores
N = the number of pairs

Substituting the values from Table 6.3, we obtain

2 2
t=

J

15(15

J 164 210 ~ 60-

1)



Table 6.3 Before-and-After Scores of 15 Students in an Introduction to Research Class

(1) (2) (3) (4) (5)
Subject
Number Pretest POStteSt D P

1 IO 12 +2 +4
2 9 13 +4 +I6
3 8 12 +4 +I6
4 II 9 -2 +4
5 IO 8 -2 +4
6 7 9 +2 f4
7 10 12 +2 +4
8 9 II +2 +4
9 8 10 +2 f4

10 6 IO +4 +I6
II 10 12 +2 +4
12 7 13 +6 +36
13 IO 6 -4 +I6
14 9 13 +4 +I6
I5 10 14 +4 +I6

ZD = +30 20’ = + 164

The t-ratio tells us that the observed difference is 2.84 times as great as the
difference that would be expected under a true null hypothesis. We must now
consult the Table of t-Values to determine the statistical significance of our observed
ratio.

The number of degrees of freedom for the nonindependent t-test equals N - 1, N
being the number of pairs of observations. In our example we have 15 - 1 = 14
degrees of freedom. In the Table of r-Values we find that with 14 degrees of freedom
a r-value of 2.145 is needed for the f to be significant at the .05 level and a z-value of
2.917, for significance at the .Ol level. Our obtained value of 2.84 exceeds the
given value for the .05 level but does not reach the given value for the .Ol level.
This means that the difference between the two means is significant at the .05  level
but not at the .Ol level. If we had set our level of significance at .05,  we could
conclude that taking a research course does change the attitude of the students
toward research under the conditions present in our study.

The Logic of the t-Test

The numerator of the f-test is the actual difference that has been observed between
two groups. The denominator (s,,)  is an estimate of how much these two groups
would be expected to differ by chance alone; that is, it indicates the difference to be
expected between two groups selected by a random procedure from a single parent
population. This denominator is based on: (1) the number in the samples, n1 + n2
(the larger the number, the less random differences to be expected between sample
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means), and (2) the variation within the groups, s1 and s1 (the greater the variation
within groups, the greater the random differences to be expected between groups).
Since the denominator is a measure of how much apparent difference can be ex-
pected through chance alone, it is called the err-w  term of the f-test.

If the ratio of observed difference (numerator) divided by error term (de-
nominator) equals or exceeds the value indicated in the Table of t-Values, the null
hypothesis can be rejected at the indicated level of significance.

Analysis of Variance

In analysis of variance (ANOVA),  as in the f-test, a ratio of observed differences/
error  term  is used to test hypotheses. This ratio, called the F-ratio, employs the
variance (w’)  of group means as a measure of observed differences among groups.
This means that ANOVA is a more versatile technique than thet-test. At-test can be
used only to test a difference between two means. ANOVA can test the difference
between two or mwe means. Some statisticians never use the f-test, since ANOVA
can be used in any situation where at-test can be used and, moreover, can do many
things the f-test cannot do.

The general rationale of ANOVA is that the total  variance of all subjects in an
experiment can be analyzed into two sources, variance between groups and vari-
ance within groups.

Variance between groups is incorporated into the numerator in the F-ratio. Vari-
ante within is incorporated into the error term or denominator, as it is in the t-test.
As variance between groups increases, the F-ratio increases. As variance within
increases, the F-ratio decreases. The number of subjects itinences  the F-ratio; the
larger the number, the larger the numerator becomes. When the numerator and
denominator are equal, the differences between group means are no greater than
would be expected by chance alone. If the numerator is greater than the de-
nominator, one consults the Table of F-Values (2.4 in the Appendix) to determine
whether the ratio is great enough to enable one to reject the null hypothesis at the
predetermined level.

COMPUTATION OF F-RATIO (SIMPLE ANALYSIS OF VARIANCE)

Suppose we have the three experimental conditions of high stress, moderate
stress, and no stress, and we wish to compare the perfomunce  of three groups of
individuals, randomly assigned to these three conditions, in a simple problem-solv-
ing task. Assume that the data presented in Table 6.4 summarize our observations of
the performance of these three groups and we are now to test the null hypothesis that
there is no significant difference among these observations.



Table 6.4 Measures Obtained in Three Random Samples after Performance of a Task
under Conditions of Moderate Stress, High Stress, and No Stress

19 361
IX 324
17 289
16 256
15 225
15 225
14 196
13 169
12 144
II 121

150 2310

ZX, 2x,*

x, = 15.0

22 484
20 400
19 361
18 324
17 289
16 256
16 256
15 225
14 196
12 144

169 2935

ZX, XX,’

2, = 16.9

15 225
14 196
14 196
13 169
13 169
12 144
12 144
II 121
II 121
10 100

125 1585

xx, xx32

x, = 12.5 F = 14.8

The means can be seen to differ from each other and from the overall mean for all
30 subjects. Are the differences among these means great enough to be statistically
significant or is it likely that they occurred by chance? To answer this, we compute
the F-ratio.

The first step is to find the sum of the squared deviation of each of the individual
SCOES  from the grand mean. This index is called the total sum of squares and is
found by applying the formula

In our example this value is

Xx,2 = 6830 - F = 258.8

Then we find the part of the total sum of squares that is due to the deviations of
the group means from the grand mean. This index is called the sum of the squares
between groups. (To be grammatically correct, we should say the sum of squares



among groups when more than two groups are involved. However, it is a long-
standing tradition to use the term sum of squares between groups, and in order to be
consistent with other texts, we are retaining this usage here.) This index is found by
applying the formula

In our problem this value is

Then we find the part of the total sum of squares that is due to the deviations of
each individual score from its own group mean. This index is called the sum of the
squares within groups and is found by applying the formula

In our problem this value is

Zn,’ = 2310 - q + 2935 - F + 1585 F = 161.4

The sum of the squares within groups could also be found by subtracting the sum of
squares between groups from the total sum of the squares, that is,

xx,* = zx,* zq2 (6.11)

In our case

Xx,* = 258.8 - 97.4 = 161.4

The F-Test of Significance

Table 6.5 summarizes the results of our calculations so far, together with the
results of further calculations. Column (1) of the table lists the three sources of
variance: between-groups variance, within-groups variance, and total variance.
Column (2) contains the sums of squares, which we have already calculated. Col-
umn (3) lists the number of degrees of freedom associated with each source of
variance. The number of degrees of freedom for between-groups variance is equal to
(G - l), G being the number of groups. In our example this value is 3 - 1 = 2.
The degrees of freedom for within-groups variance is n, - 1 + n2 - 1 + ‘. In
our example this value is 10 - I + 10 - 1 + 10 - 1 = 27. The number of de-



grees  of freedom for total variance equals N - 1; in our example 30 - I = 29.
This last value could also be obtained by adding the between-groups and within-
groups degrees of freedom.

Table 6.5 Summary of the Analysis of Variance of the Three Groups

(1) (2) (3) (4) (5) (6)
Source of Level of
Variance SS df MS F Significance

Between groups 9 1 . 4 2 4 8 . 7 0 8 . 1 4 0 . 0 1
Within groups 161.4 27 5.98
Total 258.8 29

The next step, then, is to find the between-groups mean square and the wirhin-
groups mean square. These values are obtained by dividing the between-groups and
within-groups sums of squares by their respective degrees of freedom. The resulting
values are the mean squares. In our example the mean square between groups is
97.412 = 48.7 and the mean square within groups is 161.4127 = 5.98. The mean
square within groups is the error term for our F-ratio. By applying the following
formula, we finally arrive at the end product of the analysis-of-variance procedure,
the F-ratio:

(6.12)

In our example this value is

F = 48.70
_ = 8.145.98

We now consult Table A.4 in the Appendix to determine whether the F-ratio we
have obtained is statistically significant. We find the column headed by the be-
tween-groups (numerator) degrees of freedom of our experiment and go down this
column to the row entry corresponding to the number of our within-groups (de-
nominator) degrees of freedom. At this point in the column we find two values, one
in reman type and one in boldface type. If our F-ratio is equal to or greater than the
value given in lightface, our F-ratio is significant at the .05  level. If our obtained
F-ratio is equal to or greater than the value given in boldface, it is also significant at
the .Ol level. In our example, with 2 and 27 degrees of freedom, we need an F-ratio
of 3.35 to reject the null hypothesis at the .OS level and an F-ratio of 5.49 to reject
the null hypothesis at the .Ol level. Since our obtained F-ratio is greater than both of
these values, it is significant at the .Ol level and the null hypothesis is rejected at
that level.



The assumption underlying the analysis-of-variance procedure is that if the
groups to he compared are truly random samples from the same population, then the
between-groups mean square should not differ from the within-groups mean square
by more than the amount we would expect from chance alone. Thus under a true
null hypothesis we would expect the F-ratio to be approximately equal to one. On
the other hand, if the null hypothesis is false, the difference among group means
should be greater than what is expected by chance, so the mean square between
would exceed the mean square within. In such cases the F-ratio, the mean square
between divided by the mean square within, wiil have a value greater than one. We
then consult the Table of F-Valdes to determine whether the ratio for our data is
sufficiently greater than 1 .O to enable Us to rkject the null hypothesis at our pre-
determined level. As the difference between these mean squares increases, the
F-ratio increases and the probability of the null hypothesis being correct decreases.

When the null hypothesis is rejected as a result of this analysis-of-variance
procedure, we cannot say more than that the measures obtained from the groups
involved differ and the differences are greater than one would expect to exist by
chance alone.

A significant F-ratio does not necessarily mean that all groups differ significantly
from all other groups. The significant F may be a result of a difference existing
between one grouj,  and the rest of the groups. For instance, in our problem it might
be that Group 3 is significantly different from Group 1 and Group 2, but Groups 1
and 2 do not differ significantly from each other. There are several statistical tests
that can be applied to find the location of significant differences. Those developed
by Tukey and by Scheffi are particularly useful.4

In our example we selected our three grotips  randomly from the same population
and thus we can assume that they did not differ beyond the chance expectation prior
to our experimental treatments. The significance of the&ratio indicates that the dif-
ferences found between these groups&r treatment are beyond chance expectation.
We attribute this to our experimental treatment and conclude that the level of stress
affects the performance of individuals in simple problem-solving tasks. This is as
far as we can go in our interpretation of this F-ratio. If we need further statistical
analysis, we can use Tukey’s, Scheffk’s, or other tests to determine the significance
between pairs of individual measures. These techniques can tell us how specific
stress conditions affect the performance and can answer such questions as, Is there
any difference in performance scores under conditions of moderate and high stress?
moderate and no stress? and high and no stress?

MULTIFACTOR ANALYSIS OF VARIANCE

We may wish to investigate the combined effect of stress level and task difficulty
on performance in a problem-solving task. To investigate this problem we will vary
both the level of stress and the difficulty of the task. The layout for an experiment



investigating the combined effects of two or more  independent variables is called a
factorial design and the results are analyzed by means of a multifactor  analysis of
variance.

Let us assume that we have carried out this experiment using five subjects in each
group and that the data shown in Table 6.6 represent a summary of our observations
of the performance of the subjects. Applying multifactor analysis of variance will
enable us to find (1) whether there is a significant difference between the perfor-
mance of the subjects under a moderate stress condition and under a high stress
condition, (2) whether there is a significant difference between the performance of
the subjects given an easy problem-solving task and those given a difficult task, and
(3) whether or not the two variables, stress and task difficulty, have a combined
effect on the performance of the subjects. The effects investigated by the first and
second analyses are called main effects, whereas the third is referred to as the
interaction effect. The end products of these analyses will be three F-ratios, two of
which indicate the significance of the two main effects and the third, that of the
interaction effect.

Table 6.6 Measures on Two Levels of Problem-Solving Tasks under Moderate and
High Conditions of Stress

Simple

Task

Difficult

Moderate

20
20 Group ,
19
19 x=19

22
21 Group 2
20
19 x=20
18

ZXIOO

High

16 Group 4 %I’,,  = 175
15
14 x= 15 x, = 17.5
12

zx 75

Z$ = 195 I+ = 180
x,, = 19.5 X,,  = 18.0

5X Total = 375
X (Grand mean) = IX.75

The computation of these F-ratios involves the following steps:
I. Find the total sum of squares, the sum of squares between groups, and the sum

of squares within groups using the same procedures and formulas applied in simple
analysis of variance. These values, derived from the data in Table 6.6. are



xx,2 = 7181 - F = 149.75

&,Z = C?$Y + +v + +v + y _ CY$P = 103.75

Zx,’ = 149.75 103.75 = 46.00

2. Break down the sum of the squares between groups into three separate sums of
squares: (a) the sum of squares between columns, (b) the sum of squares between
rows, and (c) the sum of squares for interaction between columns and rows:

a. The between-columns sum of squares represents the sum of the squared devia-
tions due to the difference between the column means and the grand mean. It is
found by using the formula

Using this formula, the sum of squares between the columns for the data shown in
Table 6.7 is

b. The between-rows sum of squares is the sum of the squared deviations due to
the difference between the row means and the grand mean. It is found by applying
the formula

For the data presented in Table 6.6 this value is

xx;, = 02 + (175)2  _
10 10

F = 31.25

c. The sum-of-squares interaction is the part  of the deviation between the group
means and the overall mean that is due neither to row differences nor to column
differences. In other words, this is the difference between the total of the sum of
squares between groups and the sum of squares between rows, that is,

xx&, = Lx:, ~ (Zx,$ + Xx6,) (6.15)

Expressed in words, the interaction sum of squares is equal to the between-groups
sum of squares minus the sum of the between-columns sum of squares and the
between-rows sum of squares.



For the data presented in Table 6.6, this interaction value is

s&, = 103.75 - (11.25 + 31.25) = 61.25

3. Determine the number of degrees of freedom associated with each source of
variation. They are found as follows:

df  for between-columns sum of squares = C - I
df  for between-rows sum of squares = R - 1
df  for interaction = (C - l)(R - 1)
df for between-groups sum of squares = (G - 1)
df  for within-groups sum of squares = IZ(n ~ 1)
df for total sum of squares = N - 1

where
C = the number of columns
R = the number of rows
G = the number of groups
n = the number of subjects in one group
N = the number of subjects in all groups

4. Find the mean-square values by dividing each sum of squares by its associated
number of degrees of freedom.

5. Compute the F-ratios for the main and the interaction effects by dividing the
between-groups mean squares by the within-groups mean square for each of the
three components.

Table 6.1 Summary of a 2 x 2 Multifactor Analysis of Variance

Source of Variance

Between columns (stress)
Between rows (task)
Columns by rows (interaction)

Level of
ss df MS F Significance

11.25 I 11.25 3.913
31.25 I 31.25 10.869 .Ol
61.25 1 61.25 21.304 .Ol

Between groups 103.75 3 34.583
Within groups 46.00 16 2.875

TOtal 149.75 19

6. The results of the calculations based on the data presented in Table 6.6 are
summarized in Table 6.7. Three F-ratios arc listed in this table. To find the
significance of each of these values we consult the Table of F-Values as before. To
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emer this table we use the number of degrees of freedom assoaated with each
F-ratio (df for the numerator) and the number of degrees of freedom associated with
the within-groups mean square (df for the denominator). For example, our be-
tween-columns F-ratio is 3.913. Consulting the table, we see that, with 1 and 16
degrees of freedom, an F-ratio of 4.49 or more is needed for significance at the .05
level. Since our F-ratio is smaller than the value shown in the table, it is not
significant.

To be significant, the F-ratio for between rows, with I and 16 degrees of free-
dom, should reach 4.49 (.05  level) or 8.53 (.Ol level). Since our obtained value of
F, 10.869, exceeds both of these values, it is significant at the .Ol level.

For the interaction between columns and rows, with 1 and 16 degrees of freedom,
an F-ratio of 4.49 (.05  level) or 8.53 (.Ol level) is needed. Our obtained value of F,
21.304, exceeds both of these values and thus is significant at the .Ol level.

Interpretation of the F-ratios

The first F-ratio (between columns) in Table 6.7 is not significant and shows that
the stress conditions do not differ significantly from one another in their effect on
the performance of the subjects in the experiment. This analysis is a comparison of
the combined performance of Groups I and 2 with the combined performance of
Groups 3 and 4. We could have arrived at the same conclusion by using the f-test
procedure.

The second F-ratio (between rows), which is significant at the .Ol level, is based
on the comparison of the performance of the subjects in Groups 1 and 3 with those
in Groups 2 and 4. From the significance of this F-ratio we can infer that the
difference between the performance of those subjects given an easy problem-solving
task and those given a difficult problem-solving task is beyond chance expectation.
Examining the data presented in Table 6.7 we see that those groups who performed
simple problem-solving tasks have obtained a combined mean of 20 as compared
with a mean of 17.5 for those groups who performed difficult tasks. Since we have a
significant F-ratio for the difference, we conclude that under conditions similar to
those of our experiment, a higher level of task performance can be expected when
the task is simple than when it is difficult.

The third F-ratio shows the interaction effect between the two variables, stress
level and the degree of task difficulty. The significance of the F-ratio in this case
means that the effect of stress level on performance in a problem-solving task
depends on the degree of difficulty of the task. We can see this phenomenon more
clearly if we compare the observed results with the results that would be expected if
there had been no interaction between the two independent variables.

Let us calculate what we would expect the means of the four groups to be if there
had been no interaction. The mean for all subjects is 18.75. The mean for the ten
subjects under moderate stress, 19.5, is ,075 greater than this figure, whereas the
mean of the ten subjects under high stress is 0.75 less. The mean for the ten subjects
doing the simple task, 20.0, is 1.25 greater than the mean for all subjects, whereas
the mean for the ten subjects doing the difficult task is 1.25 less.



For each group we can calculate the mean that would be expected for this group if
there had been no interaction. We do this by adding to the grand mean the difference
for the column that group is in and the difference for the row that group is in. If there
had been no interaction, what would we expect the mean of Group 1 to be? Begin-
ning with the total mean, 18.75, we would add 0.75 because the subjects were under
moderate stress and another 1.25 because they did an easy task. This gives a total of
20.75.

Following this procedure for each of the four groups, we would have the follow-
ing expected values:

Overall stress Task Expected
Mean + Difference + Difference  = “due

Group I 18.75 f0.75 f1.25 20.75
Group 2 18.75 +0.75 - 1.25 18.25
Group 3 18.75 -0.75 + 1.25 19.25
Group 4 18.75 -0.75 - 1.25 16.75

Now compare the actual group means with these expected group means:

x=19.5  X=18.0  X=18.75  x=,9.5 X=,8.0 X=,8.75

(Note that we could use the differences between expected and observed values to
compute the sum of squares for interaction directly. Each group differs from its
expected mean by 1.75. Square this value and multiply by the number of cases
to get I.79 x 20 = 61.25.)

We see that Group 1 actually did less well than we would expect, knowing they
were under moderate stress and doing a simple task. Group 2, doing a difficult task
under moderate stress, did better than we would expect. Considering the groups
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under high stress, we find that Group 3, with the simple task, did better than
expected, whereas Group 4, with the difficult task, did less well than expected.
Since our F-test indicated that the interaction was significant, we conclude that
moderate stress produces higher scores when combined with a difficult task than
with a simple task, whereas high stress produces higher scores when combined with
a simple task than when combined with a difficult task.

The use of multifactor analysis has been of great value in educational research
since many of the questions that educators need to investigate are inherently com-
plex in nature. These techniques enable us to analyze the combined effects of two or
more independent variables in relation to a dependent variable. For example, a
simple comparison of the dependent variable means of two groups of pupils taught
by different methods might yield insignificant results. But if intelligence is incor-
porated into the experiment as a measured independent variable, we might find that
one method works better with the less intelligent pupils while the other works better
with the more intelligent pupils.

Multifactor analysis of variance is not limited to two independent variables as in
our example. Any number of independent variables may be incorporated in this
technique. Several intermediate statistics books, including Edwards’,5  explain the
computation and interpretation of these procedures.

The Chi-Square Test of Significance

Sometimes we need to find the significance of differences among theproportions  of
subjects, objects, events, and so forth, that fall into different categories. A statistical
test used in such cases is called the chi-square (x2) test.

In the chi-square test two sets of frequencies are compared: observedfrequencies
andexpecredfrequencies. Observed frequencies, as the name implies, are the actual
frequencies obtained by observation. Expected frequencies are theoretical frequen-
cies, which are used for comparison.

Consider the hypothesis that the proportion of male to female students in statistics
courses is different from that of male to female students in a schoool of education as
a whole. If we know that 40 percent of the total enrollment in the school is male and
that 300 students are enrolled in statistics courses, our expected frequencies will be

Male students
Female students I20 300180 I

Now suppose that our observed frequencies are found to be

Male students
Female students



We want to determine whether the difference between our expected and observed
frequencies is statistically significant. To determine this we apply the chi-square
formula, which is

where
x2 = the value of chi-square

f0 = the observed frequency in each cell
fe = the expected frequency in each cell

Applying this formula to our data, we obtain

x2 = (140 - 120)’ + (160 - 180)*
120 180

= 5.55

To determine whether this chi-square value is significant we consult the table of
x2 values in the Appendix (AS). The first column in this table shows the number of
degrees of freedom involved in any given chi-square problem. The remaining col-
umns present the values needed for different levels of significance. The number of
degrees of freedom, as we have discussed previously, is based on the number of
observations that are free to vary once certain restrictions are placed upon the data.
When we have a fixed number of observations divided into only two categories, as
soon as the number falling into one category has been determined, the other is fixed.
Thus, when we find that the number of male students is 140, the number of female
students in the total of 300 must be 160. In this example there is only one degree of
freedom. In problems such as this the number of degrees of freedom equals K - 1,
where K is the number of categories used for classification. By consulting the Table
of x2 we find that our observed value of 5.55 is statistically significant at the .05
level.

Interpreting this result we can now state that the proportion of males who take
statistics courses within our school is significantly greater than that of females at the
.05  level of confidence. The significance level of .05  means that there are less than
five chances in a hundred of observing such a difference between the proportions of
male and female students through chance alone. Thus the data lend support to our
research hypothesis that the proportion of male students who tend to take statistics
courses is greater than that of female students.

The use of the &-square  test is not limited to situations in which there are only
two categories of classification; this test can also be used to test a null hypothesis
that there is no significant difference between the proportion of the subjects falling
into any number of different categories. Suppose, for example, we have asked a
sample of 120 undergraduate students to indicate whether they prefer to live in a
dormitory or in town, or whether they have no preference, with the results shown in
Table 6.8.
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Table 6.8 The Observed Frequencies of Responses of 120 Undergraduate Students as
to Their Preferences with Respect to Living Accommodations

Subject

Undergraduate
students

If there were no difference between the three categories of response, we would
have 40 responses in each category. These would be our expected frequencies, as
shown in Table 6.9.

Table 6.9 The Expected Frequencies of Responses of 120 Undergraduate Students as
to Their Preferences with Respect to Living Accommodations

Undergraduate
students 40 40 40 120

A comparison of the two sets of frequencies presented in Tables 6.8 and 6.9
shows that there are differences between our expected and observed data. To find
whether or not they are significant, we apply the chi-square test. The value of x’ for
these data, using formula (6. I6), would be

x2 = (40  - 4OY  + (50 - 4OY  + (30  ~ 4OY  = 5,00
40 40 4 0

The degrees of freedom, again, equal the number of categories minus one
(K - I) or, in this case, 3 - 1 = 2. Referring to the Table of x’ we see that with
two degrees of freedom a X2 value of 5.991 or greater is required for significance
at the .05 level. However, our obtained x2 value is smaller than this value and
therefore is not statistically significant. This means that the observed differences
between categories could easily have happened by chance. Consequently, the null
hypothesis that there is no significant difference between the frequencies of the three
categories, cannot be rejected. In other words, if the proportions of preferences for
the three categories in the entire undergraduate population were equal, we would
expect to observe sample differences as great as those in our sample more  often than
five times in a hundred through chance.



THE CHI-SQUARE TEST OF INDEPENDENCE

So far we have only considered examples in which observations were classified
along a single dimension. Sometimes, however, we wish to use more  than one
dimension for classification. Suppose, for example, we add another dimension to
the previous problem and ask both graduate and undergraduate students to state their
preferences as to their living accommodations. Assume the frequencies as shown in
Table 6.10 were the result.

Table 6.10 The Observed Frequencies of Responses of 200 Undergraduate and
Graduate Students as to Their Preferences with Respect to Living Accommodations

Undergraduate
students

Graduate students

40 50 30 120

20 40 20 80

Total 60 90 50 200

In this case our null hypothesis might be that the preference for living accommo-
dations is the same for graduates as it is for undergraduates-that is, the variables
student status and preference for living accommodations are unrelated. Our obser-
vations show that 30 percent of all students prefer dormitories, 45 percent prefer
town, and 25 percent state no preference. If the null hypothesis is true, we would
expect to find identical proportions among both graduates and undergraduates, as
shown in Table 6.11. We can compute expected cell frequencies by multiplying the
row frequency associated with a cell by the column frequency associated with that
cell, then dividing this product by the grand total. For example, the expected

Table 6.11 The Expected Frequencies of Responses of 200 Undergraduate and
Graduate Students as to Their Preferences with Respect to Living Accommodations

Subjects Dormitory TOW” NO Preference Total

Undergraduate
students 36 54 30 120

Graduate students 24 36 20 80

TOtal 60 90 50 200



frequency of response for undergraduate students who want to live in a dormitory is
120 x 60 t 200 = 36, for those undergraduate students who prefer to live in town
it is 120 x 90 + 200 = 54, and for graduate students who want to live in a dormi-
tory it is 80 X 60 + 200 = 24. Using this approach, we find the expected frequen-
cies for each cell.

Note that all the row and column totals in Table 6.11 are exactly the same as those
shown in Table 6.10. We now ask if the observed frequencies differ enough from
the expected frequencies to enable us to reject the likelihood that these differences
could have occurred merely by chance. Applying the formula, we obtain

XE = (40 - 36)’ + (50 - 54)’ + (30 - 30)’ + (20 - 24)’ + (40 ~ 36)’ + (20 ~ 20)’
3 6 54 30 24 3 6 2 0

x2 = 1.8518

The number of degrees of freedom for a two-way table is found by applying the
formula

df = (C - I)@ - 1) (6.17)

where
df = the number of degrees of freedom
C = the number of columns
R = the number of rows

Applying this formula to the problem under consideration, we obtain

df = (3 - 1)(2  - 1) = 2

Referring to Table A.5 we see that with two degrees of freedom a x2 value of
5.991 is needed for significance at the .05  level. But our obtained x2 value of I .85 18
is smaller than this table value and is therefore not significant. This means that the
differences between expected and observed frequencies are not beyond what would
be expected by chance. In other words, we do not have reliable evidence that there
is a relationship between the variables student status and living accommodation
preference in the population from which our sample was drawn.

Summary

Investigators hope to form generalizations about populations by studying groups of
individuals selected from the populations. These generalizations will be sound only
if the selected groups-the samples-used in these studies are representative of the
larger groups-the populations-from which they arc chosen.

A sample is random if all the members of a population have an equal chance of



being included within that sample. It is the preferred means of subject selection for
behavioral research.

Sometimes it is important for the purpose of a specific study to choose indepen-
dent samples from different subgroups or strata of a population and to obtain
separate measures for each stratum. This is stratified sampling.

When the target population is unwieldy, an investigator may choose randomly a
number of groups for study rather than individual subjects. This is called cluster
sampling. A cluster sample is more subject to sampling errors than is simple random
sample.

Inferential statistics provide tools by means of which researchers are able to
estimate how confident they can be in inferring that phenomena observed in samples
would also be observed in the populations from which the samples were drawn. In
other words, inferential statistics enable us to estimate how reliable our observations
may be.

A basic strategy in inferential statistics is to compute the extent of difference
among observations that would be likely to arise by chance alone. The result of this
computation is often called the error term. Then the observed differences among
observations are compared with the error term. If the observed differences are
similar to the differences that could arise by chance, the researcher cannot reject the
likelihood that the observed differences were merely a function of chance. If the
observed differences are greater than the error term, the researcher consults the
tabled values of the statistic to determine whether the ratio of observation to error is
great enough to reject the chance explanation at a predetermined level of confidence.

The indices most commonly used in inferential statistics are: the t-test, analysi\ of
variance, and the chi-square test of significance. The f-test is used to find wheiher
the difference between two sample means is statistically significant. There are fwo
types of f-tests: (1)  the t-test for independent groups, which is used to compare two
sample means when the samples have been drawn independently from a population
and (2) the f-test for nonindependent groups, which is employed with two samples in
which the subjects are matched or with two repeated measures obtained from the
same subjects.

Analysis of variance is used to compare the means of two or more samples and to
test the null hypothesis that no significant differences exist between the means
obtained from these samples. Multifactor analysis of variance enables us to test the
effect of more than one independent variable and also the interaction effect of such
variables.

The chi-square statistic is an index employed to find the significance of differ-
ences between proportions of subjects, objects, events, and so forth, that fall into
different categories, by comparing observed frequencies and expected frequencies.

Exercises

1. Does the accuracy of a sample in representing the characteristics of the population from which it
was drawn always increase with the size of the sample? Explain.
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2. You have been asked to determine whether teachers in the Central School District favor the “year
around school” concept. Because the district is rather large you are asked to contact only 500
teachers. Determine the number you would choose from each of the following levels to draw a
proportioned stratified random sample:

LOd Total Number

ElelllelltXy 3,500
Middle School 2,100
High School 1,400

Total 7,000

3. You are asked to conduct an opinion survey on a college campus with a population of 15,000
students. How would you proceed to draw a representative sample of these students for your
survey?

4. A national magazine has one million subscribers. The editorial staff wants to know which aspects
of the magazine are liked and which are not. The staff decides that a personal interview is the best
method to obtain the information. For practical and economic reasons only 500 people in five
cities will be surveyed. In this situation, identify:
a. the target population
b. the accessible population
c. the sample

5. Investigators wish to study the question, Do blondes have more  fun?
a. What is the null hypothesis in this queition?
b. What would be a Type I error in this case?
c. What would be a Type II error in this case?
d. If one investigator uses an .05  level of significance in investigating this question and another

investigator uses an .OOl  level of significance, which would be more likely to make a Type I
error?

e. If one investigator uses an .05 level of significance in investigating this question and another
investigator uses an ,001  level of significance, which would be more likely to make a Type II
error?

6. Inferential statistics enable researchers to:
a. reach infallible conclusions
b. reach reasonable conclusions with incomplete information
c. add an aura of legitimacy to what is really sheer guesswork

I. What two conditions rue necessary for a Type I error to occur?
8. Which of the following statements describes the role of the null hypothesis in research?

a. It enables us to determine the probability of an event occurring through chance alone when
there is no real relationship between variables.

b. It enables us to prove there is a real relationship between variables.
c. It enables us to prove there is no real relationship between variables.

9. A Type II error occurs when one:
a. rejects a false null hypothesis
b. rejects a uue null hypothesis
c. has already made a Type I error
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d. retains a false null hypothesis
e. retains a true null hypothesis

10. The phrase level of significance  refers to
a. the probability of an event being due to chance alone, which is calculated after the data from

an experiment are analyzed
b. the probability of a Type I error that an investigator is willing to accept
c. the actual probability of a Type II error
d. the probability of a Type II error that an investigator is willing to accept

11. How does one determine the level of significance to use in an experiment?
12. A cigarette manufacturer has employed researchers to compare the rate of occurrence of lung

cancer among smokers and nonsmokers. Considering the results of previous research on this
question, the manufacturer would probably urge the researchers to be especially careful to avoid
making a
a. Type I error
b. Type II error

13. What is indicated when the results of a study are not statistically significant?
14. You have a list of pupils in a high school who have been assigned the number 1 to 1,000. Use the

table of random numbers in the Appendix to select a sample of 50 from the hypothetical list. List
the numbers selected for the sample.

Answers
1. A larger randomly drawn sample is more likely to be representative of the population than is a

smaller random sample. A large sample obtained with a method that permits systematic bias will
not be any more representative than a small biased sample.

2. To obtain a proportional stratified sample, divide the 500 teachers in proportion to their represen-
tation in the population, as follows:

Elementary %w x 500 = 250
Middle School %e x 500 = 150
High School M x 500 = 100
Total Sample 500

3. Number a list of all students, then select a random sample of a given number by using a table of
random numbers. Starting at a random point in the table, go up or down the column and include
those students whose numbers are listed.

4. a. all subscribers to the magazine
b. the subscribers in the five cities
c. 500 individuals who are interviewed.

5. a. There is no relationship between hair color and fun.
b. The investigators make a Type I error if they declare that blondes have more fun than

nonblondes or that blondes have less fun than nonblondes, when in fact the two groups have an
equal amount of fun.

c. The investigators make a Type II error if they fail to conclude that blondes have more fun or
less fun, when in fact they do.



d. the investigator with the .05  level of significance.
e. the investigator with the ,001  level of significance.

6. b
I. The null hypothesis must be true and the investigator must reject it.
8. a
9. d

10. b
11. by weighing the consequences of Type I and Type II mm
12. a
13. The results could easily be a function of chance; the evidence is insufficient to justify a conclu-

sion.


