
SISCO: THE SIMULATOR FOR INTEGRATED
SUPPLY CHAIN OPERATIONS

Dean C. Chatfield
Department of Business Information Technology

Pamplin College of Business Administration
1007 Pamplin Hall (0235)

Virginia Tech
Blacksburg, VA 24061

540-231-4593
deanc@vt.edu

Terry P. Harrison
Professor, Department of Supply Chain and Information Systems

The Smeal College of Business Administration
Pennsylvania State University

509 Business Administration Building
University Park, PA 16802

814-863-3357
tharrison@psu.edu

Jack C. Hayya
Professor Emeritus, Department of Supply Chain and Information Systems

The Smeal College of Business Administration
Pennsylvania State University

303 Beam Bldg
University Park, PA 16802

814-865-1461
jch@psu.edu

* Partially supported by the Center for Supply Chain Research, Smeal College of Business, Penn State University

Chatfield, Harrison, and Hayya

2

ABSTRACT

We discuss SISCO, the Simulator for Integrated Supply Chain Operations, a Java-based decision

support tool that simplifies supply chain simulation model development. SISCO relieves the user of

both simulation modeling and programming tasks, making this methodology available to a wider

audience. It allows a user to specify the structure and policies of a supply chain with a GUI-based

application and then store that specification in the open, XML-based Supply Chain Modeling

Language (SCML) format. SISCO maps the contents of the SCML file to a set of supply chain

"building blocks" developed with ThreadTec's Silk™ simulation classes. The resulting system

combines the ease of a visual supply chain simulator with the power and flexibility of a full object-

oriented programming language that provides unparalleled supply chain simulation model detail and

flexibility.

Chatfield, Harrison, and Hayya

3

1 INTRODUCTION AND MOTIVATION

 We developed the Simulator for Integrated Supply Chain Operations (SISCO) to provide researchers

and practitioners with a robust yet flexible simulation tool designed specifically to address the

complexities in modeling supply chains. SISCO takes the idea of a supply chain “simulator,”

examples being Simulation Dynamics’ Supply Chain Builder and IBM’s Supply Chain Analyzer, and

develops it further [1].

1.1 Major Design Goals

We believe simulation modeling of supply chains is an important decision support technique and that

the current state of the art needs refinement in a number of areas, including accessibility, flexibility,

model depth, and others. The development of SISCO was driven by a number of design goals,

described in the following sub-sections.

1.1.1 Accessibility and Extensibility

Currently, the development of complex supply chain simulation models requires the modeler to

possess a number of skills, including programming and simulation modeling capabilities. SISCO

relieves the user from modeling and programming tasks, and allows one to easily create simulation

models of complex systems with a straightforward, GUI-based interface. This capability gives a large

population of users, including many that would not normally be able to create supply chain simulation

models, access to the advantages of simulation. Additionally, SISCO frees the user to focus on more

important aspects, such as gathering information and using simulation to analyze various scenarios.

While SISCO allows novice users easy access to simulation modeling, the extensibility and

customization capabilities needed by “power users” are not compromised. For technically capable

users who wish to customize SISCO, the addition of user-defined code is straightforward given that

Chatfield, Harrison, and Hayya

4

SISCO is Java-based. The user may augment SISCO via additional routines developed in Java. This

extensibility is an important advantage of SISCO.

1.1.2 Powerful, Detailed Representation

As a simulation modeling tool, our objective was to allow users of SISCO to describe a supply chain’s

operations with a degree of depth and complexity that is unavailable with current simulation tools,

commercial or non-commercial. SISCO’s depth of model detail is state-of-the-art, including aspects

such as explicit definition of arcs and a multi-step order life-cycle.

This desire for supply chain models with depth and complexity lead to our decision to employ an

object-oriented, agent-type approach. A simulation application, especially one focused on supply-

chain simulation, is a natural fit for object-oriented development, since each "node" in the supply-chain

can be represented by an object, providing a natural mapping from reality to simulation model. Using

object-oriented development techniques also assists in the implementation of the accessibility goal of

SISCO by enabling the development of set (library) of reusable supply-chain constructs. This library

of constructs, the SISCO Library, is fundamental to the automated simulation model generation that

makes SISCO so easy to use for novice model builders, while the ability to extend these constructs is

what makes SISCO extensible. Pre-built object-oriented constructs make SISCO a very efficient

supply-chain analysis tool.

To accurately model the interactions between supply chain participants, we chose to take an agent-

style approach, where each active participant in the supply chain is represented by an autonomous

object and the set of objects that comprise the supply chain simulation model interact and operate by

sending messages among themselves. SISCO generates supply chain models that employ this “agents”

approach. Such an approach requires an object-oriented, multi-threaded platform, which we satisfy in

the combination of ThreadTec’s Silk simulation framework [7] and the Java programming language---

both key building blocks of SISCO.

Chatfield, Harrison, and Hayya

5

1.1.3 Open Storage Format

The absence of an open, standardized method of storing a representation about a supply chain’s

structure and operations deters supply chain research and modeling. Each modeling effort includes

creating a new method for representing a supply chain’s structure and policies, which inhibits sharing

of information and generally results in continual duplication of effort. We believe it is important to use

a general, structured method of supply chain information storage in the SISCO system.

We employ the Supply Chain Modeling Language (Chatfield [1]), as a standard method for

describing the structure and policies of a supply chain. SCML is an XML-based, platform-independent,

methodology-independent, means of storing the structural and managerial information that describes a

supply chain’s layout and operational characteristics. It is a set of elements, attributes, and document

formatting rules that create a systematic format for supply chain information storage. SCML is defined

by a document type definition (DTD), written in XML. Much as HTML is a set of elements, attributes,

and rules for describing how hypertext is to be displayed by a browser, SCML is a set of elements,

attributes, and rules for storing supply chain information. SCML provides a universal language with

which users of various analytical tools, including simulation tools, can store and exchange supply

chain information. The decision to use this open storage format, the Supply Chain Modeling Language

(SCML), allows users of SISCO to share supply chain descriptions not only with other SISCO users,

but with users of any SCML-compliant modeling tool.

1.1.4 Java-Based Development

Utilizing a Java-based core (the SISCO Engine) not only enables our other design goals, such as

accessibility, object-orientation, and extensibility, but also provides a number of other advantages over

other possible development languages. In addition to being a fully object-oriented language, Java is a

multi-platform development tool that enables the SISCO Engine's use on the widest possible user base

Chatfield, Harrison, and Hayya

6

by supporting all three major platforms, Windows, Unix, and MacOS. Also of importance is

availability of well-developed XML parsers written for Java. The threading capabilities of Java enable

agent-style modeling and even distributed processing possibilities. Finally, internet “friendliness” is

ensured by the Java-based execution system, providing flexibility in the ways that SISCO is delivered,

such as in application form, applet form, or served from a remote server.

1.2 Benefits and Applications of SISCO

We developed SISCO because simulation modeling can provide valuable insights into the operational

characteristics of supply chains. Variability is endemic in all systems, and certainly so in supply

chains. Variation in demands, production yields, transportation times, and cost of goods over time are

common in the actual operation of a supply chain, yet these operational factors are often modeled

deterministically.

The following are issues in supply chain decision-making that would support the use of simulation

analysis in supply chain management:

• Realistic-sized supply chains are rarely modeled stochastically.

• Delivery times and costs are assumed linear or static in most supply chain models.

• Few supply-chain modeling efforts have taken exchange rates and other global conditions into

account, though these can be significant.

• Service-oriented supply chains have been only sparingly modeled.

We have already used SISCO to investigate the phenomenon of demand variability amplification,

often referred to as the Bullwhip Effect (BWE). By examining the impact of lead-time variability and

forecasting methods on the severity of the BWE [4].

Chatfield, Harrison, and Hayya

7

1.3 Organization of Paper

This paper is organized into seven sections. Section 2 is an overview. The three stages of SISCO are

described in Sections 3-5. Section 6 discusses issues related to implementation of the SISCO modeling

platform. Section 7 summarizes our work to date and offers further development directions. To

conserve space, we have placed technical details about SCML in a working paper [3], also available on

the web.

2 OVERVIEW OF THE SISCO SYSTEM

Operation of SISCO involves three stages: definition, translation, and execution. The structure of the

SISCO system, dictated by these stages, includes the following three modules, each of which will

perform an important role in the final system:

• The Visual Supply Chain Editor (VSCE)

• The Experiment Designer (ED)

• The SISCO Engine.

A conscious decision was made to make the VSCE, the ED, and the SISCO Engine individual stand-

alone applications, as opposed to creating a single, monolithic SISCO application. As stand-alone

applications, the components of SISCO are not only useful as part of the SISCO system, but can also

be useful in conjunction with other supply chain modeling software as well. Our idea is to begin the

creation of a supply-chain modeling and analysis “workbench” which allows modular tools to be

“plugged-in,” as needed. SISCO’s heart, the SISCO Engine, is a simulation module created with this

goal in mind. Additionally, by separating the SISCO system into modules, we allow distributed usage

where the user executes the VSCE and ED modules locally and submits the model information to a

Chatfield, Harrison, and Hayya

8

remotely served SISCO Engine. By separating the Java-based Engine from the rest of the system, this

architecture admits the possibility of Web-based distributed processing.

At the definition stage, the users describe the supply chain, as well as the experimental conditions.

The Visual Supply Chain Editor allows a user to "build" a supply chain through a graphic user

interface and then specify relevant logical and descriptive information. The nodes and arcs are

subsequently defined with greater detail, as are the processes, materials, products, and managerial

policies that interact with the nodes and arcs. The VSCE is used to define a supply chain’s structural

and managerial aspects. Please see figure A1 for a screenshot of the VSCE and [3] for further visuals

and details of the VSCE. This supply chain description is stored in the open, XML-based SCML file

format. The reader is referred to [3] for the complete details of the SCML format. The Experiment

Designer is used for defining simulation-specific and experimental information, which is stored in an

XML-based experiment (EXP) file.

At the translation stage, the SISCO Engine performs automated model generation, resulting in a

Silk™ simulation model. Silk™ is a Java-based object-oriented simulation framework that provides

core simulation capabilities in the form of Java classes [4]. The SISCO Library is a set of Silk™-

derived classes that represent the participants, materials, and actions occurring in a supply chain. It

consists of data classes that mimic the information structure of the SCML file format, along with

supply-chain-oriented simulation building blocks created with the Silk™ framework. The SISCO

Engine maps the SCML file contents to the SISCO Library, creating the appropriate Java objects,

which form a Silk™-based simulation model.

The SISCO Engine, in conjunction with a Java compiler, is then used to execute the simulation

model. The output of the SISCO system is extensive and useful for various types of analysis. First, the

user is presented with a simulation summary detailing the performance characteristics for each node

and arc’s activities over all replications. Second, the user is provided with a data file containing the

performance characteristics for each individual replication, and another data file containing time-series

Chatfield, Harrison, and Hayya

9

data. Please see Figures A5, A6, and A7 for screen representations of the three output files. The

SISCO Engine uses the SCML and EXP files as input, processes the information contained in those

files to automatically build a Java-based supply chain simulation model, and outputs simulation

summary, individual replication, and time series data on the performance, the supply chain

participants, and the supply chain as a whole. See Figure 1 for a graphic overview of the SISCO

system.

3 DEFINITION: DESCRIBING THE SUPPLY CHAIN AND EXPERIMENT

3.1 Visual Supply Chain Editor

The Visual Supply Chain Editor (VSCE) is a graphic tool for defining the supply chain to be

simulated. In keeping with our desire to create stand-alone applications that have utility outside of the

SISCO system, we use the Supply Chain Modeling Language (SCML) as a standard method for

describing the structure and logic of a supply chain. The Visual Supply Chain Editor is a graphic

SCML editor, allowing the user to define a supply chain’s structure and characteristics and then save

this information as an SCML file. Once the user has stored the supply chain information as an SCML

file, that information can be used by any SCML-compliant application.

Information required for the successful design and execution of a supply chain simulation model is

extensive and varied. In order to adequately describe a supply chain, both the physical and logical

design aspects of the supply chain must be defined. We divide the supply chain into five basic types of

constructs: nodes, arcs, components, actions, and policies.

The nodes, arcs, and components constitute the physical aspects of the supply chain. Nodes

represent locations within the supply chain, such as a factory. We allow a user to create suppliers,

Chatfield, Harrison, and Hayya

10

production facilities, warehouses, distributors, retailers, and customers. The basic supply chain layout

is built in a drag-and-drop fashion, resulting in a set of nodes and arcs (locations and pathways) that

define the general supply-chain topology. Beyond the basic topology defined by the nodes and

connecting arcs, it is necessary to define the characteristics of each node and arc within the supply

chain. The node characteristics that must be defined include the inputs and outputs, the order and

shipment routings, the independent demands (for customer nodes), the storage capacities and costs, the

overhead costs, the actions that can occur at a node, and the policies, such as those of inventory.

Arcs represent the connections between nodes and are defined by the nodes at their endpoints.

Additionally, we define the arc’s mode (land, rail, air, water, or telecommunications), the capacity, the

container size, the transportation rates and costs, maintenance and expansion costs, as well as the

policies that may control the arc’s actions. In addition to nodes and arcs, a supply chain’s components

must be defined. Components include materials, finished goods, labor, currency, and other items that

are consumed, transported, created, or otherwise utilized in the supply chain. The value, physical

characteristics (if applicable), and the methods of creation must also be defined.

Beyond the physical aspects of the supply-chain, the actions and controlling logic of the supply-

chain must be defined. Actions, which include demand or replenishment order placement, order

processing (production), transportation, receiving, order placement, or shipping a delivery. Also

included are policies that define conditions under which actions occur by describing circumstances that

“trigger” the actions or by defining goals that are to be met because of performing the actions.

Examples include inventory, transportation, and production. Finally, the policies of the supply chain

must be defined. Policies define relationships between supply chain participants, the control or

conditions under which actions occur, or otherwise specify the controlling logic of the supply chain.

The VSCE provides the user with a friendly, structured, GUI-based method of defining the supply-

chain information and saving it in the non-proprietary, XML-based SCML format.

Chatfield, Harrison, and Hayya

11

3.2 The Experiment Designer (ED)

Simulation-specific information, generally referred to as experimental control information, is also

needed to create an executable simulation. This information includes information regarding

environment variables, such as the number of replications, animation settings, output statistics, and

similar data. and is specified by running the Experiment Designer (ED). For example, one can see in

Figure A2 the ED form used for specifying basic run parameters: the duration of each replication, the

number of replications, and the status of the simulation traces (on/off). The collected information is

saved to an XML-based experiment (EXP) file for use by the SISCO Engine.

4 TRANSLATION: MODEL GENERATION WITH THE SISCO ENGINE

The centerpiece of the SISCO system is the SISCO Engine. This module translates the supply chain

information provided by the user into an equivalent Silk™-based supply chain simulation model. The

SISCO Engine assists the user of both simulation modeling and programming by taking the description

of the supply chain and experimental conditions residing in the SCML and EXP files and generating a

Silk™ simulation model based on that information. To accomplish this, a mapping scheme and a set

of specially-designed, supply-chain-oriented Silk™ compatible Java classes are used to create a Java

representation of the supply chain. The SISCO Engine is comprised of

• the SISCO Library,

• the SISCO Automated Model Mapper (SAMM),

• simulation management routines.

The SISCO Library is a set of supply-chain-oriented Java classes that represent supply chain

locations, resources, actions, and logic. The Library classes are created by extending the core classes

contained in the Silk™ simulation framework. The SAMM is a set of routines that perform a real-time

Chatfield, Harrison, and Hayya

12

mapping of the supply chain to the proper members of the SISCO Library. For each piece of the

supply chain, the correct classes in the Library are identified and corresponding objects are created,

resulting in a Silk™ simulation model of the supply chain. The simulation management routines

handle the basic Java and Silk™ “housekeeping,” provide the GUI for the SISCO Engine, compile the

output statistics, create the various output files, and provide an overall “container” for the SISCO

Engine routines.

4.1 SILK

Silk™ is a Java-based, multi-threaded, discrete-event simulation framework created by ThreadTec Inc.

Silk™ consists of a set of Java classes that provide low-level, core simulation constructs from which

users create simulation models. Examples of these constructs include entities, resources, queues,

statistical tracking variables, the system clock, random number generators, and other fundamental

pieces of discrete event simulation. Users build a Silk™ simulation model by developing a Java

program that utilizes the Silk™ simulation classes, which offers flexibility because the users have

access to all the capabilities of Java, a general-purpose programming language, while creating a

simulation model. Users can extend the Silk™ classes, as well as include any custom logic desired by

creating additional Java routines. This does, however, require the users to have specialized

programming skills, in addition to simulation modeling skills.

For any object to function properly within the Silk™ simulation framework, that object must be of

a type (class) that is derived, directly or indirectly, from the Silk™ Entity class. According to the

Silk™ documentation, "the Entity class provides the basis for defining classes that employ the process-

oriented simulation extensions to Java that constitute the Silk™ language." Instances (objects) of

Entity-derived classes run in their own Java thread of execution. By running in its own thread of

execution, the object executes independently from other simulation objects running in their own

threads, as if each thread of execution were a separate computer. Each thread has its own life span

Chatfield, Harrison, and Hayya

13

and, most importantly, operates according to its own timeline without being interfered with by other

objects' operations. Objects running in separate threads can interact with other objects in the system, a

capability which is obviously needed in a simulation environment. The Entity class also provides a

process() procedure that contains code for the tasks an object will perform during its life. We “start”

the process() procedure when we wish the life of the object to begin.

4.2 Modeling Paradigm

Our modeling approach creates autonomous units representing each node or arc within the supply

chain. These objects interact with each other, performing the basic actions an order undergoes during

its processing, from inception to disposal. This object-oriented, agent-based approach is used because

it provides flexibility, extensibility, and a natural mapping from reality to the simulation model.

4.2.1 Life Cycle of an Order

We approach the modeling of a supply chain from the perspective of an order’s life cycle, from

inception through delivery. The life cycle of an order, where the actions occur in parenthesis, is as

follows:

• order creation (origin node)

• order placement (origin node)

• order transport (information arc)

• order processing (target node)

• order shipping (target node)

• order transport (shipment arc)

• order receiving (origin node).

Chatfield, Harrison, and Hayya

14

4.3 Modeling Fundamental Pieces of the Supply Chain

4.3.1 Modeling Nodes

The basic pieces of a supply chain are the nodes and arcs that define the topology of the supply chain.

Nodes can be of six types: suppliers, production points, warehouses, distributors, retailers, or

customers. A node in a supply chain performs five basic actions with regard to the life cycle of an

order: order creation, order placement, order processing, order shipping, and order receiving.

Order creation involves the creation and initialization of an order. Orders are initially created by

one of two sources, an inventory policy signaling that a replenishment order is necessary, or an

external demand generated by a customer node. At the time of creation, an order is essentially a desire

for an item. To act upon that desire, the order must be placed.

 Order placement is the process that makes the order known to the supply chain, and is not the

same as the initial creation of the order. Order placement prepares an order for transport to its target,

which is the node that will fulfill it. The placement process is the first action that an order undergoes

and may include processing delays and costs. The placement process is also where the routing of the

order (where to send it for fulfillment) may be determined.

Order processing attempts to meet the needs or demands of the order. Fulfillment of an order is

made from the finished goods inventory of the node. If finished goods inventory cannot meet the

order’s needs, the order waits until goods arrive in the finished goods inventory. Finished goods arrive

as a result of either a processing delay (for suppliers), a production process (for production nodes), or

the placement of an order (stocking point nodes). A finished goods inventory is utilized with all types

of nodes, except the customer node, though the interpretation changes with non-production nodes. The

finished goods inventory has its most traditional meaning when used with a production node, but can

also be interpreted as “regular inventory” when used with stocking point nodes. Or it can be looked at

as a “hand-off” point, when used with supplier nodes whose internal operations are considered a “black

Chatfield, Harrison, and Hayya

15

box”. The completion of the order processing action is the point at which the order begins the return

trip to its origin. The delays and costs involved with order processing are entirely dependent on the

type and characteristics of the node in question.

Order shipping is the process of preparing the fulfilled order for transport to its origination node.

Order shipping may involve grouping of certain orders together, prioritizing orders, or the handling

and processing of goods to be shipped. There may be costs and delays involved with the shipping

process.

Order receiving is the process of accepting an order that has been filled. Orders received are orders

that were placed at some point in the past and have traversed their life cycle, being transported, filled,

and transported again to return to their origin. The receiving process serves to organize the receipt of

goods and ensures they are accounted for in inventory figures or customers-served tallies. After

receipt of an order, it is essentially complete.

4.3.2 Modeling Arcs

Arcs can be of two fundamental types: information (order) arcs, or delivery (product) arcs. The arcs in

a supply chain perform one action in the life cycle of an order, order transport, though it may be

performed multiple times during the life of a single order. An arc represents the movement of an order

(information or goods) in a single direction between two nodes. Order transport may be the movement

of information, such as the case with demand and replenishment orders being sent to their target node

for processing, or the movement of goods, such as the shipment of filled orders, back to their origin.

4.3.3 Modeling Other Supply Chain Processes

We also include other operations that define the life cycle of an order. Inventory management, both

for materials and finished goods, is one such action. We include these actions by making them

processes owned by any node that stocks items. At each node, a separate, policy-driven inventory

Chatfield, Harrison, and Hayya

16

management system is used to control each item stored. This design provides the greatest flexibility in

modeling of component stocking throughout the supply chain. Inventory management systems are

contained within individual nodes and operate autonomously based on the needs and conditions at that

particular node.

In addition, the external, independent demands that drive the supply chain's overall actions must be

included. These demands are distinguished from the dependent demands generated by inventory

management systems because they are external to the system and, in many cases, beyond the direct

control of supply chain managers. We represent these demands with processes, called Demand

Generators, owned by the Customer nodes. Demand characteristics for each demanded item can be

individually specified for each customer. This allows for the greatest flexibility in the demand-

generated order sequence that drives the supply chain.

4.4 SISCO Library

The implementation of the modeling approach described in the above section is based on a specialized

set of Java classes known as the SISCO Library. The SISCO Engine is a Java application that

incorporates ThreadTecs’s Silk™ as a simulation foundation. By utilizing the Silk™ primitive classes

as a basis, we develop a library of specialized, Silk™-compatible Java classes that represent the

various pieces of a supply chain. The SISCO Engine uses the various pieces of the SISCO Library to

create a simulation model from an SCML file that has the same structure and characteristics of the

supply chain described. The following sections discuss the parts, architecture, and implementation of

the SISCO Library.

4.4.1 X-Classes

The first part of the SISCO Library is a set of approximately 50 Java classes, known collectively as the

"x-classes," so-called because all begin with the letter "x", standing for XML focus. The x-classes are

Chatfield, Harrison, and Hayya

17

data-only classes that provide a means of representing the supply chain contained in an SCML file as a

set of Java classes with the same hierarchical structure. This is needed because the information must be

in a Java-accessible format before we can make use of it for model development. The x-classes mimic

the structure of the SCML file format with each of the elements defined in the SCML specification

having an equivalent x-class, except the root element (supplyChain). It allows a straightforward

transfer of information from SCML (XML) files to Java-compatible data structures. Thus, for example,

an Action element in the SCML file will be represented by an equivalently structured Java object based

on the xAction class., and a NodeCosts SCML element will be represented by an xNodeCosts object.

The top-level x-classes are xNode, xArc, xComponent, xAction, and xPolicy, which represent the

node, arc, component, action, and policy elements of the SCML format. The xNode and xArc classes

are also used as parent classes for Node and Arc classes, which are operational classes of the SISCO

system.

4.4.2 Operational Classes

Whereas the x-classes are data storage classes, the operational classes represent object types that will

perform operations and interact with each other in a manner that simulates the operation of a supply

chain. The operational classes of the SISCO Library are a set of classes that extend the Silk™ Entity

class and represent the nodes, arcs, and orders of the supply chain, as well as the managers and actors

that control and perform tasks within these elements of the supply chain.

The operational classes of the SISCO Library include the Order, Node, Arc, and multiple Manager

and Actor classes. Our modeling paradigm focuses on the life-cycle of an order, so a well-designed

representation of an order is important. Each order has an origin node, which is the node that creates

the order, and a target node, which is the node that will fill the order and then send it back to the origin.

The arc used to transport the order from origin to the target is referred to as the information arc, while

the arc used to move the filled order from the target back to the origin is the shipment arc. The most

Chatfield, Harrison, and Hayya

18

important part of the Order class is its guidance of the order through the life cycle. An order's target

node and the information arc are determined by the Order Placement Manager of the origin node,

while the shipping arc is determined by the Shipping Manager of the target node. With the origin and

target nodes determined, the order controls its own sequence of actions, but the nodes determine the

details of where and how those actions will occur. The Order class provides a representation of both

demand (customer) and replenishment orders, and includes a basic structure for storing individual

order information, plus the logic (code) needed for guiding the order through its lifecycle and

recording statistics along the way.

Besides accurately representing an order, the most basic modeling need is to represent the nodes

and arcs that define the basic structure of the supply chain. The Node and Arc classes are templates for

the creation of objects, based on Silk™ Entities, that represent the nodes and arcs. These classes

contain all the data structures of the x-classes they extend (xNode and xArc), but also include methods

(coded routines) to enable the creation and control of the Managers, variables, arrays, queues,

resources, statistical tracking variables, and other structures necessary to simulate the operation of the

node or arc. The most important part of the Node class involves the coordination of the basic actions

that occur at a node: order creation, order placement, order processing, shipping, and receiving. The

Arc class is similar to the Node class except it is much simpler because arcs only perform one basic

action, order transport.

The Manager classes include the OrderPlacementManager, OrderProcessingManager,

ReceivingManager, ShippingManager, TransportationManager, InventoryManager, and

DemandGenerator classes that form the basis for objects which control the basic actions that occur at

the nodes and arcs of the supply chain. The Manager classes contain the queue monitoring, logic, and

actor creation routines necessary for a Manager object to independently monitor and control one of the

basic actions and to create an appropriate actor object when that action needs to occur. For example,

the Managers created by a Node make use of the Resources and Queues to control the basic actions.

Chatfield, Harrison, and Hayya

19

An Order Placement Manager utilizes the Order Placement Queue (where orders wait for placement to

occur) and the Order Placement Resource to control the process of Order Placement. Likewise, an

Order Processing Manager, a Shipping Manager, and a Receiving Manager are created to control those

operations. Order creation is handled by DemandGenerator Manager objects if the demand is from a

customer, or by InventoryManager objects that generate replenishment orders based on an inventory

policy if the demand is internal to the supply chain.

The Actor classes define templates for finite life-span objects that are created to allow multiple

independent, simultaneous actions to occur in the model. The actor objects are created to perform a

specific action one time after which they are destroyed. The Actor classes include the

OrderPlacementActor, OrderProcessingActor, ReceivingActor, ShippingActor, a n d

TransportationActor. The relationships between the Nodes and Arcs (“owners”), the Managers, and

the Actors is fundamental to the way SISCO operates.

4.4.3 Owner-Manager-Actor Structure

The operational classes follow a fundamental structure that we refer to as "owner-manager-actor." This

approach computationally separates the management, monitoring, and task-oriented operations of the

supply chain by creating separate objects to perform each. For example, anode has a number of tasks

that occur at that location in parallel, such as order placement, order processing, and inventory

management. If each of these processes were implemented as procedures within the node object, they

would preempt each other -- inventory management tasks would be performed, while order processing

tasks that should be performed at the same time wait. The "owner-manager-actor" structure addresses

this problem by creating an object for each task. Each object runs in a separate thread of execution,

which allows each to perform its procedures simultaneously, without preempting each other.

The "owner" is the object representing the place in the supply chain where tasks are occurring, such

as a node. "Manager" objects generally implement tasks, usually policy-related, that the owner must

Chatfield, Harrison, and Hayya

20

continuously perform. An example of a manager would be an object that handles order processing by

constantly checking a queue for orders, or one that handles inventory management by checking the

inventory level of an item and comparing it to the policy parameters. When a manager determines that

an action needs to be performed, such as production to fulfill an order or placement of an inventory

replenishment order, an "actor" object is created to perform the action. The reason for this is the same

reason that managers are created to perform monitoring duties for their owner (node or arc): to allow

simultaneous operations. For example, if an inventory manager object also performed the

replenishment ordering action, then inventory monitoring would not occur while the ordering is taking

place. Thus, to prevent preempting a manager's monitoring activities, "actor" objects are created as

needed to handle the actions. In most cases, actors are temporary objects that are disposed off once the

action has been completed. The "owner-manager-actor" structure, coupled with the multi-threading

capabilities of Silk™, allows us to create simulation models that operate as in reality, with processing

occurring independently and simultaneously. See Figure 2 for a representation of the owner and

managers of the owner-manager-actor architecture.

4.5 Model Generation with SAMM

The SISCO Automated Model Mapper (SAMM) is the part of the SISCO Engine responsible for

turning the user’s description of the supply chain and experimental conditions into a working

simulation model. The model generation process involves taking the user input, primarily contained in

the SCML file, and generating an equivalent Silk™ simulation model by creating instances of the

appropriate SISCO Library classes. The process involves parsing the SCML file to identify the various

supply chain constructs, mapping these constructs to the appropriate classes in the SISCO Library; and

initializing these constructs if necessary.

The SCML file stores the supply chain information in elements and attributes according to a

specific structure defined by the SCML document type definition (DTD) and by XML conventions.

Chatfield, Harrison, and Hayya

21

By knowing the elements, attributes, and the rules of their structure, we can identify the supply chain

construct descriptions in the SCML file and then create an equivalent set of Java objects. To process

the SCML file and identify the various structures within it, we utilize a Java-based XML parser to read

the SCML document in a serial fashion from the top down. The XML parser executes “event

procedures” when it encounters certain general structures within an XML file. For example, when the

parser encounters the start of an element, a start Element procedure is executed, after which the parser

continues reading the document. By adding custom task-specific code to the parser’s event

procedures, we are able to customize the parser for a specific application of XML, such as SCML. The

customized parser will then perform specific actions, such as creating an object based on a specific

template (instantiating a class) or copying the contents of an SCML attribute to a Java object field,

based on what structures were encountered by the parser.

When the parser identifies the beginning of a basic supply chain construct (node, arc, component,

action, or policy) it creates an object based on the corresponding SISCO Library class and begins to

complete the details with the information that follows in the SCML file. When the parser identifies the

end of a construct’s description, the object is placed in an array with similar objects for future access, it

is initialized if necessary, and the parser continues on to the next supply chain construct in the SCML

file.

The initialization process varies, based on the type of object. Non-operational objects, such as

components, actions, and policies, have a simple initialization that includes creation of arrays or other

organizational aids to make access to the information they contain easier. On the other hand, the

initialization of nodes and arcs is extensive. The initialization of a node or arc creates the appropriate

Manager and Demand Generator objects, as well as creating all the necessary Silk™ resources, queues,

state variables, and statistical tracking variables. For a node, the Silk™ Queues and Resources for

supply chain actions (order placement, order processing, shipping, and receiving) are created. Silk™

State Variables are generated for each input and output of the node, creating materials and finished

Chatfield, Harrison, and Hayya

22

goods inventory tracking variables. The associated basic action Manager objects (order placement,

order processing, shipping and receiving Managers) are created, as are Inventory Manager objects for

each node input and output. If the node is a customer node, a Demand Generator object for each

component demanded is created. Additionally, a full complement of statistical tracking variables are

created. The Manager objects will then go through an initialization process of their own, creating the

appropriate variables, arrays, and related constructs. The process is the same for creating an Arc, but

simpler because its only action is transporting orders.

Thus, the initialization of a node or an arc object begins an hierarchical initialization process,

which may be several level deep, that results in the creation of all necessary Silk™ components, Java

objects, and their associated routines, to simulate the operation of that node or arc. The parsing

procedure contained in SAMM ensures that the various simulation entities are initialized and started in

the correct order, because it follows the hierarchy as it is laid out in the SCML file. Thus, an element

is never initialized before any of its sub-elements, and an entity is never started before all the elements

it contains are initialized.

When the SCML file is finished being processed the entire supply chain it describes is now

represented as a set of Java and Silk™ simulation objects that are ready to execute by starting the

simulation run.

5 MODEL EXECUTION AND OUTPUT

5.1 Executing the Model

The SISCO Engine is executed as a Java application, which can be seen in Figure A3. The user

specifies the SCML and EXP files that contain the model and experimental information, as well the

names for the summary, replication, and time-series data files. After specifying the files to use, SAMM

parses the files and generates a Silk simulation model. As soon as the Model Mapper is finished

Chatfield, Harrison, and Hayya

23

generating the set of Silk objects that will represent the supply chain, the model is ready to execute.

Essentially, the model is ready to execute since all objects are created, started, and initialized. The

model sits in a state of suspended animation because the simulation clock is not advancing, but held at

time 0.0 until the user starts the simulation run. The user starts the simulation by clicking on the “run”

button in the control console dialog that pops up when model generation is finished, which can be seen

in Figure A4.

5.2 Model Output

The results of a SISCO simulation run are contained in three files: a summary text file, a replication

data file, and a time-series data file. The summary file contains performance characteristics over all

replications for each node, arc, and the system. In addition to total supply chain costs, for each node we

are presented with characteristics of the following information:

• time orders spent in each of the “action” queues,

• length of the queues,

• time spent performing each action,

• utilization of the action resources,

• costs incurred for each of the actions,

• inventory and shortage levels,

• inventory and shortage costs,

• inter-order times,

• order lead times,

• order sizes and variances,

• lead-time demand,

• demand and lead time forecasts,

• service levels

Chatfield, Harrison, and Hayya

24

and other related information.

The following information is presented for each arc in the supply chain:

• the time that orders spend in the transport queue,

• the length of the queue,

• the time spent in transit,

• the utilization of the transportation resources,

and other related information.

The replication data file contains the mean performance value for each node (or arc) over all

replications for a set of chosen metrics. Thus, if three metrics are chosen and we simulate a five- node

supply chain for 30 replications, then the replication file will contain thirty values for each metric for

each of the five nodes (or arcs). The time series data file contains a complete set of values for one

replication of the simulation. The time series file is used to capture information for further analysis,

and may include order amounts, inventory levels, forecasts and other characteristics.

6 IMPLEMENTATION AND APPLICATION

6.1 Development Technologies

The implementation of SISCO involves merging three relatively new, complementary technologies:

Java, ThreadTec’s Silk™, and XML processing (called “parsing”).

Chatfield, Harrison, and Hayya

25

6.1.1 Java

Java's object-orientation, platform independence, and Internet "friendliness" were major factors in

choosing it as the SISCO Engine’s development language. Java’s object-orientation fits with our

modeling goal of creating simulation models consisting of autonomous supply chain participants. Of

additional import is that Java currently has the best XML processing capability and support among

general-purpose programming languages. Thus, the Java language is a natural fit for the development

of the SISCO Engine.

6.1.2 SILK

Silk™, by ThreadTec Inc., is a set of Java classes that provide discrete-event simulation features

needed for simulation modeling, including basic implementation of entities, queues, random number

generators, and a coordinated simulation clock. Developers create Silk™-based simulation models by

working directly in Java, utilizing the relatively small set of pre-built Java classes that provide process-

oriented simulation capabilities, to develop powerful Java-based simulation models [4]. Silk™ allows

the user to develop complex, customized simulation models, while still allowing access to the full

capabilities of the Java language. Since we utilize a large amount of custom programming, both as an

external “controller” that actually builds the simulation model, as well as within the simulation models

themselves, the capabilities and flexibility of the Silk™ framework are a great fit for the development

needs of SISCO. Additionally, the multi-threaded, object-oriented nature of Silk™ simulation models

fully coincides with the aim to have SISCO generate object-oriented simulation models where supply

chain participants are represented by relatively autonomous units.

Chatfield, Harrison, and Hayya

26

6.1.3 XML Parsing

 XML forms the basis of the SCML supply chain description language so, for SISCO to utilize SCML

files, parsing (both read and write) capabilities are necessary. At the time of SISCO’s development

some XML-related technologies were not yet fully specified.

In order to operate as a cohesive system, each of SISCO’s three modules, the VSCE, the ED, and

the SISCO Engine, must be able to utilize XML-based file formats, namely SCML files containing the

“model” information and the EXP files containing the “experimental” information. The ability to read

and write XML-based file formats is developed by customizing the procedures of a general XML

parser so that it recognizes the structures of a specific XML-based file format, also called a document

type. In our case we have two document types, SCML and EXP, each of which require separate

custom parsing procedures. The general XML parsers may implement the SAX (Simple API for

XML) API (application programming interface) for parsing XML, the DOM (Document Object

Model) API for parsing XML, or both APIs.

SAX parsers are faster and less memory-intensive than DOM parsers and provide a simple,

efficient manner for processing an XML file in a sequential, one-pass fashion. The SAX parser reads

through the XML files sequentially and “fires” events when certain structures, such as the start of an

element, are identified. Event procedures contain code, executed whenever the event occurs, that

performs the desired information processing as the structures of interest are identified. The event

procedure code is customizable.

In contrast, the DOM is a tree-based API that maps an XML document into a set of objects in a

tree-like structure determined from the document's DTD [5]. The DOM API allows the programmer to

read objects (XML nodes on the tree), as well as add, subtract, or modify XML nodes to the tree. The

tree-structure (the DOM) can then be navigated to find, extract, and change information, if desired.

Using a DOM parser, we can build an XML document from the ground up by specifying a single root

Chatfield, Harrison, and Hayya

27

node (the element that serves as the base of the tree) as the starting point and then adding branches to

the tree.

We chose to utilize the SAX API for file reading routines in all SISCO modules. In the SISCO

Engine, we must read through an SCML file, identify structures of interest, perform tasks (executing

appropriate code), and then move on to the next piece of the supply chain. This is a natural fit for a

SAX parser. Likewise, the task of reading the information contained in an SCML or EXP file back

into the Visual Basic data structures of the VSCE or ED is a natural fit for a SAX parser. The DOM

API allows one to build an XML file from scratch, which is what we wish to do when saving the

contents of the VB data structures in the VSCE to an SCML file, or the ED’s data structures to an EXP

file. Therefore we chose to utilize the DOM API for the file writing routines included in the “Save”

function of the VSCE and ED.

6.2 SISCO Engine

The SISCO Engine needs to be able to read supply chain structure and logic information from SCML

files and experimental information from EXP files. Additionally, in the case of the SCML file,

procedures must be executed on-the-fly, based on what is identified in the supply chain description

file, in order to generate the appropriate set of simulation objects.

6.2.1 Parsing SCML Files

The process of reading the SCML file and creating instances of the appropriate SISCO Library

classes is well-suited for a SAX parsing procedure. The potential size and complexity of the SCML

document, compared with other XML documents, favors the one-pass, event-based parsing method of

SAX over the tree-based parsing of DOM parsers. DOM parsers store a representation of the hierarchy

of the entire document in memory before processing can be performed, which is slower and more

memory-intensive than the one-pass, immediate-action approach of a SAX parser.

Chatfield, Harrison, and Hayya

28

Of the two document types the SISCO Engine must read and process, the processing of SCML files

is significantly more complex and is described in the following sections. In essence, the parser

transfers, or maps, the structure and content of the SCML file to an equivalent structure comprised of

Java objects. These Java objects are based on the x-classes of the SISCO Library, which mimic the

hierarchy and information content of SCML elements and attributes, as defined in the SCML DTD.

Some objects based on the Operational classes of the SISCO Library, such as Nodes, Arcs, and

InventoryManagers, are also created by the parsing process or the initialization of objects created by

the parsing process. These operational objects control or perform the actual simulation activities of the

model, as opposed to the essentially information storage duties of objects based on the x-classes.

The most important SAX parser event procedures used by the SISCO Automated Model Mapper,

the part of the SISCO Engine that processes SCML files, are the start_Element and end_Element

events. The start_Element procedure is executed whenever the parser encounters the start “tag” of an

XML element and contains the majority of the custom code that defines the SCML parser. The

start_Element procedure identifies the element the parser has encountered (such as node or

actionOutput) and creates a corresponding object, from the appropriate SISCO Library class, placing it

in the proper location within the object hierarchy. The element’s information, generally contained in

XML attributes and sub-element, is parsed and transferred to the appropriate fields of the new Java

object, keeping the hierarchy of information intact. The end_Element event procedure fires when the

end “tag” of an XML element is found and identifies the element whose description is “ending,” using

that information to ensure that the Java data structures faithfully reflect the hierarchical structure of the

SCML file. If the element ending is identified as a basic construct (node, arc, component, action, or

policy), the object used to represent that construct is placed in an array with objects of the same type

and the object is initialized.

For example, if an actionOutput Element is “found” by the parser an xActionOutput object is

created (based on the xActionOutput class in the SISCO Library), the appropriate information is

Chatfield, Harrison, and Hayya

29

transferred to its fields, and the object assigned to appropriate field of the xAction object representing

the action element currently being parsed, and then initialized, if necessary. The parser will continue

extracting information about the current action element until the end “tag” for that element is

encountered and the end_Element procedure executed. The xAction object will then be placed in an

array with other actions, initialized, and the parsing of the SCML document will continue.

Initialization may include the creation of Managers, Resources, Queues, arrays, state variables,

statistical tracking variables, and related structures. Some of the created structures may have their own

initialization procedures. The result for more complex supply chain constructs, such as a node, is that

initializing the object begins an hierarchical initialization process that includes the creation and

initialization of subordinate structures, which may occur several levels deep.

Thus, when the parser finds the end of a basic construct’s description, the Java object that will

represent that construct in the simulation model is initialized and put in an array with like objects. The

parser then moves on to the next element in the SCML file and the process continues until the entire

SCML file is processed. When the SCML file is finished being processed the entire supply chain it

describes is now represented as a set of Java and Silk simulation objects that are ready to execute by

starting the simulation run.

6.2.2 Parsing EXP Files

The procedure the SISCO Engine uses for parsing EXP files is fundamentally similar, but significantly

less complex than the one for SCML files. The customized SAX parser identifies the various elements

of the EXP file as is reads through the file and extracts simple pieces of information, such as the

number of replications to run from XML attributes. The information is then assigned to the

appropriate Java variables in the main simulation management procedure of SISCO. The files are

short, the processing is simple and direct, and there are no objects created or initialization procedures

to coordinate.

Chatfield, Harrison, and Hayya

30

6.2.3 Development Platform

The SISCO Engine was built with the Java programming language, utilizing the “Swing” Library for

user-interface programming. All Java development was done using Symantec's Visual Cafe integrated

development environment. The Silk™ simulation framework from ThreadTec Incorporated [4] is

used to provide core simulation capabilities. To enable the SISCO Engine to parse SCML and EXP

files, we utilize Sun Microsystem’s XML parser, which provides a Java implementation of both SAX

and DOM-based parsers.

6.3 VSCE and ED

The VSCE and ED applications are the “user interaction” modules of the SISCO system. They are

GUI driven and, through an organized set of menus, forms, and dialog boxes, provide a simplified

manner for the user to specify relatively complex information. In both applications the information the

user provides is temporarily stored in a set of Visual Basic data structures that mimic the structure

(DTD) of the file format being used (SCML or EXP).

When a user chooses to save their work (in either application) the application converts the

information the user has specified, and stored in the data structures, into an equivalent SCML or EXP

file. A customized XML parsing routine, utilizing the DOM API, handles the task of creating the EXP

or SCML file, creating the appropriate XML elements and attributes, transferring the information from

the VB data structures to the XML elements and attributes and ensuring that the structure of the newly

save file corresponds to the SCML or EXP document type definition (DTD) as well as general XML

formatting conventions.

When a user chooses to read information from a previously created file back into the VSCE or ED

for further editing the a different parsing routine is used. A customized parsing routine, utilizing the

SAX API, reads the SCML or EXP file and creates Visual Basic data structures on-the-fly as various

Chatfield, Harrison, and Hayya

31

pieces of the file are identified and processed. Information stored in XML elements and attributes is

transferred over to the corresponding fields in the VB data structures. When parsing is finished, the

display (diagram, forms, and dialog boxes) is updated to reflect the newly opened supply chain

information.

The VSCE and ED were both developed using Microsoft Visual Basic 6, Professional Edition. This

integrated development environment (IDE) was chosen because it is a mature graphic application

development system that allows robust, visually appealing applications to be developed in a

straightforward manner. Within the Visual Basic environment we employ Microsoft’s MSXML parser

to provide DOM parsing capabilities, while relying on VividCreation’s ActiveSAX to provide SAX

parsing capabilities.

6.4 Applications

SISCO was developed because simulation modeling can provide valuable insights into the operational

characteristics of supply chains. Variability is a reality in all systems, but especially so in supply chain

systems. Variation in demands, production yields, transportation times, and cost of goods over time, as

well as many other factors are common in the actual operation of a supply chain, yet these operational

factors are often modeled deterministically. The following are some issues in supply chain decision-

making that would benefit from rigorous simulation analysis:

• realistic-sized supply chains are rarely modeled stochastically.

• delivery times and costs are assumed linear or static in most supply chain models.

• very few supply chain modeling efforts have taken exchange rates and other global conditions

into account, though these can be significant drivers of profitability.

• service-oriented supply chains have been only sparingly modeled.

The most extensive use of SISCO so far has been to investigate the phenomenon of demand

variability amplification, often referred to as the Bullwhip Effect (BWE). A set of supply chain

Chatfield, Harrison, and Hayya

32

structures was created, using the VSCE, and simulated under various conditions to examine the impact

of lead-time variability and forecasting methods on the severity of the BWE [2]. SISCO was

invaluable in the creation, execution, and coordination of the simulations.

7 CONCLUSIONS

Variability is a fact of life in supply chains, but is often overlooked or assumed away when supply

chain models are built for decision support. The Simulator for Integrated Supply Chain Operations

(SISCO) provides a friendly but powerful approach to perform simulation analysis of supply chains.

SISCO goes beyond current simulators by enabling GUI-based “off-the-shelf” modeling of common

supply chain operations, while still allowing access to a full general-purpose programming language

for customization if desired. Silk™, the Java-based core of SISCO, provides a robust, flexible,

internet-friendly, multi-threaded environment for simulation model development and execution. As a

fully object-oriented supply chain simulator, SISCO represents supply chain participants as

autonomous units that communicate and interact, much like they do in reality. SISCO addresses the

supply chain information standardization problem by using the XML-based SCML file format for

supply chain model storage. Beyond SISCO itself, the SCML parsing routines and data structures in

Java and Visual Basic 6, developed as part of the SISCO project, are generic and can be used to make

other applications and tools SCML- compliant. In all, SISCO greatly lowers the "barriers to entry" for

simulation modeling of supply chains, extends the current state of the art in terms of modeling features,

and provides information sharing capabilities in a robust, object-oriented simulation modeling tool.

Chatfield, Harrison, and Hayya

33

ACKNOWLEDGMENTS

We thank the Center for Supply Chain Research at Penn State University for partial funding of this

project. We also thank ThreadTec for permission to use Silk™.

REFERENCES

[1] Chatfield, D. 2001. SISCO and SCML- Software Tools for Supply Chain Simulation Modeling and
Information Sharing. Unpublished Ph.D dissertation. Department of Management Science and
Information Systems, Penn State University, University Park, PA.

[2] Chatfield, D., J. Kim, T. Harrison, and J. Hayya. 2002. Order Flow in Serial Supply Chains.
Working Paper, Department of Supply Chain and Information Systems, Penn State University,
University Park, PA.

[3] Chatfield, D., T. Harrison, and J. Hayya. 2003. The Supply Chain Modeling Language (SCML).
Working Paper, Department of Supply Chain and Information Systems, Penn State University,
University Park, PA.

[4] Healy, K. and R. Kilgore 1998. Introduction to Silk™. ThreadTec Incorporated. Available online
http://www.threadtec.com

[5] Mosenhi, P. 1999. An introduction to XML for Java programmers. Java Pro, v3, n3, pp 48-52.
Fawcette Technical Publications, Palo Alto, CA.

Chatfield, Harrison, and Hayya

34

Figure 1. SISCO System Overview

SISCO
Engine

SCML
File

SISCO Engine
&

Java

Visual Supply
Chain Editor

Description

Output

Translation Execution

SILK
Model

Experiment
Designer

EXP
File

Chatfield, Harrison, and Hayya

35

Figure 2. Owner-Manager-Actor Modeling Architecture

Node

Order
Processing
Manager

Order
Placement
Manager

Receiving
Manager

Shipping
Manager

Transport
Manager

Transport
Manager

Transport
Manager

Transport
Manager

Inventory Mgrs.
&

Demand Generators

Chatfield, Harrison, and Hayya

36

Appendix A – Selected ScreenShots

Figure A1: Visual Supply Chain Editor
Shown: “Design” form used to specify supply chain Nodes and Arcs

(Note menu selection showing construct categories to be further defined)

Chatfield, Harrison, and Hayya

37

Figure A2: Experiment Designer
Shown: Form for specifying basic run parameters

Chatfield, Harrison, and Hayya

38

Figure A3: SISCO
Shown: Menu for selecting input and output files

Chatfield, Harrison, and Hayya

39

Figure A4: SILK Control Console
Used to begin simulation execution

Figure A5: Summary Output File (displayed in Excel)

Chatfield, Harrison, and Hayya

40

Figure A6: Replication Output file (displayed in Excel)
Shown: Results for a 30 replication run

Chatfield, Harrison, and Hayya

41

Figure A7: Time Series Output File (displayed in Excel)
Shown: Time Periods 90 – 120 from a 700 period time series file

