
3/6/22

1

Ordinary Differential Equations I
A. Godunov

1. Overview
2. Finite difference approximation
3. First-order ODE: Single-point methods

a) Euler and b) Runge-Kutta methods
4. Additional information

updated 2 March 2022

1

Part 1:

Overview

2

Motivation

Most of equations in physics are formulated in terms of ordinary
differential equations (ODE) or partial differential equations (PDE).

Examples:

Newton’s second law

𝑑𝑝
𝑑𝑡

= �⃗�

Schrodinger equation for a particle in a potential

𝑖ℏ
𝜕
𝜕𝑥

𝜓 𝑟, 𝑡 = −
ℏ!

2𝑚
Δ + 𝑉(𝑟) 𝜓 𝑟, 𝑡

Most real physics processes involve more than one independent
variable, and the corresponding equations are partial differential
equations. In many cases, however, physics can be represented by
ordinary differential equations, or PDEs can be reduced to ODEs.

We will concentrate on solutions of ordinary differential equations. 3

3

ODEs and PDEs

Most real physics processes involve more than one independent
variable, and the corresponding equations are partial differential
equations.

In many cases, however, physics can be represented by ordinary
differential equations, or PDEs can be reduced to ODEs.

We will concentrate on solutions of ordinary differential equations.

4

4

Major categories of ODEs

1. Initial value problems
Conditions for the unknown function are specified at the same
point.
example: 𝑥 𝑡" = 𝑥" , 𝑥 # 𝑡" = 𝑣"

2. Boundary value problems
Conditions for the unknown function are specified at different
boundaries.
example: 𝑦 𝑎 = 𝑦$, 𝑦 𝑏 = 𝑦%

3. Eigenvalue problems
A special type of boundary value problems, when solutions exists
only for specific values of parameters.

5

5

Classification of physical problems

Physical problems fall into one of the following three general classifications:
1. Propagation problems are initial-value problems in open domains in which

the known information (initial values) are marched forward in time or space
from the initial state. The order of ODE may be one or greater. The number
of initial values must be equal to the order of the differential equation.

2. Equilibrium problems are boundary-value problems in closed domains in
which the known information (boundary values) are specified at two
different values of the independent variable, the end points (boundaries) of
the solution domain. The order of the governing differential equation must
be at least 2, and may be greater. The number of boundary values must be
equal to the order of the differential equation. Equilibrium problems are
steady state problems in closed domains.

3. Eigenproblems are a special type of problem in which the solution exists
only for special values (i.e., eigenvalues) of a parameter of the problem.
The eigenvalues are to be determined in addition to the corresponding
solutions of the system. 6

6

3/6/22

2

Part 2:

Finite difference approximation

7

March, march, march …

Initial-value ODEs are solved numerically by marching methods.

We will concentrate on finite difference methods.

The objective of a finite difference method for solving an ODE is to
transform a calculus problem into an algebra problem by

1. Discretizing the continuous physical domain into a discrete finite
difference grid

2. Approximating the exact derivatives in the ODE by algebraic finite
difference approximations (FDAs)

3. Substituting the FDA into ODE to obtain an algebraic finite
difference equation (FDE)

4. Solving the resulting algebraic FDE

8

8

Three groups of the Finite Difference Methods

Three groups of finite difference methods for solving initial-value ODEs

1. Single point methods advance the solution from one grid point to
the next grid point using only the data at a single grid point.

2. Extrapolation methods evaluate the solution at a grid point for
several values of grid size and extrapolate those results to get for
a more accurate solution.

3. Multipoint methods advance the solution form one grid point to the
next using the data at several known points

9

9

Finite difference approximation

In the development of finite difference approximations of differential
equations, a distinction must be made between the exact solution of the
differential equation and the solution of the finite difference equation
which is an approximation of the exact differential equation.

Notations:

𝑥(𝑡) – exact solution

𝑥(𝑡) – approximate solution

This very precise distinction between the exact solution of a differential
equation and the approximate solution of a differential equation is
required for studies of consistency, order, stability, and convergence

10

10

Finite difference approximation

Exact derivatives, such as 𝑥′(𝑡), can be approximated at a grid point in
terms of the values of 𝑥(𝑡) at that grid point and adjacent grid points in
several ways.

Writing the Taylor series for 𝑥&'(using grid point 𝑛 as the base gives

𝑥&'(= 𝑥& + 𝑥&# ∆𝑡 +
1
2
𝑥&##∆𝑡! +

1
6
𝑥&###∆𝑡) + ⋯

Solving for 𝑥&# gives

𝑥&# =
𝑥&'(− 𝑥&

∆𝑡
−
1
2
𝑥&##∆𝑡 −

1
6
𝑥&###∆𝑡! − ⋯

If equation is terminated after the first term, it becomes FDA of 𝑥&#

𝑥&# =
𝑥&'(− 𝑥&

∆𝑡
𝑂(∆𝑡) 11

11

Finite difference approximation (cont.)

A first-order forward-difference approximation of 𝑥&# at grid point 𝑛

𝑥&# =
𝑥&'(− 𝑥&

∆𝑡
𝑂(∆𝑡)

A first-order backward-difference approximation of 𝑥&'(# at grid point 𝑛

𝑥&'(# =
𝑥&'(− 𝑥&

∆𝑡
𝑂(∆𝑡)

where the 𝑂(∆𝑡) term is the order of the remainder term which was
truncated, which is the order of the approximation of 𝑥&# .

A second-order centered-difference approximation of 𝑥&# at grid point 𝑛

𝑥&# =
𝑥&'(− 𝑥&*(

2∆𝑡
𝑂(∆𝑡!)

12

12

3/6/22

3

Finite difference equations

Finite difference solutions of differential equations are obtained by
discretizing the continuous solution domain and replacing the exact
derivatives in the differential equation by finite difference
approximations.

Such approximations are called finite difference equations (FDEs).

Example: consider

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥, 𝑡

Using

𝑥&# =
𝑥&'(− 𝑥&

∆𝑡
yields

𝑥&'(= 𝑥& + 𝑓(𝑥& , 𝑡&)∆𝑡

13

13

Finite difference equations and smoothness

Smoothness refers to the continuity of a function and its derivatives.

The finite difference method of solving a differential equation employs
Taylor series to develop finite difference approximations (FDAs) of the
exact derivatives in the differential equation.

If a problem has discontinuous derivatives of some order at some point
in the solution domain, then FDAs based on the Taylor series may
misbehave at that point.

For example, consider the vertical flight of a rocket. When the rocket
engine is turned off, the thrust drops to zero instantly. This causes a
discontinuity in the acceleration of the rocket, which causes a
discontinuity in the second derivative of the altitude 𝑦(𝑡).

At a discontinuity – use either single point methods or extrapolation
methods (not multi-point) because the step size can be chosen to have
the discontinuity at a grid point.

14

14

Consistency, order, stability, and convergence

There are several important concepts which must be considered when
developing finite difference approximations of initial-value differential
equations. They are a) consistency, b) order, c) stability,
and d) convergence.

a) A FDE is consistent with an ODE if the difference between them
(i.e., the truncation error) vanishes as ∆𝑡 → 0. In other words, the
FDE approaches the ODE.

b) The order of a FDE is the rate at which the global error decreases
as the grid size approaches zero.

c) A FDE is stable if it produces a bounded solution for a stable ODE
and is unstable if it produces an unbounded solution for a stable
ODE.

d) A finite difference method is convergent if the numerical solution of
the FDE (i.e., the numerical values) approaches the exact solution
of the ODE as ∆𝑡 → 0.

15

15

Part 3a:

Single-point methods

Euler methods

16

The explicit Euler method

Consider the general non-linear first-order ODE

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥, 𝑡 , 𝑥 𝑡" = 𝑥"

with the finite difference grid

Choose point 𝑛 as the base point and use the first-order forward-
difference finite difference approximation for 𝑥&#

𝑥&# =
𝑥&'(− 𝑥&

∆𝑡
= 𝑓(𝑥& , 𝑡&)

Explicit Euler finite difference equation

𝑥&'(= 𝑥& + 𝑓 𝑥& , 𝑡& ∆𝑡 𝑂(∆𝑡!)

where the 𝑂(∆𝑡!) term is included as a reminder of the order of the
local truncation error. 17

17

The explicit Euler method

The linear extrapolation with the slope

18

18

3/6/22

4

The explicit Euler method (summary)

𝑥&'(= 𝑥& + 𝑓 𝑥& , 𝑡& ∆𝑡

1. The method explicit since, 𝑓 𝑥& , 𝑡& does not depend on 𝑥&'(
2. The method requires only one known point. Hence it is a singe

point method.

3. A single FDE equation is required to advance the solution from 𝑛 to
𝑛 + 1. Thus, the method is a single-step method.

4. The method requires only one derivative function evaluation ,i.e.,
𝑓 𝑥& , 𝑡& per step.

5. The error in calculating 𝑥&'(for a single step, the local truncation
error, is 𝑂(∆𝑡!)

6. The global (i.e. total) error accumulated after 𝑛 steps is 𝑂 ∆𝑡 ,
which is the same order as FDA of the exact derivative 𝑥′(𝑡).

19

19

Example: C++ explicit Euler method
/*---
Program to solve 1st order Ordinary Differential Equations
x'(t) = f(t,x)
method: simple Euler method
input ...
f(t,x)- function supplied by a user
ti - initial value for an independent variable (t)
xi - initial value for a function x(t)
tf - find solution for this point t
output ...
xf - solution at point tf, i.e. x(tf)

---*/
double euler1d(double(*f)(double, double), double ti, double xi, double tf)
{

double xf;
xf = xi + f(ti,xi)*(tf-ti);

return xf;
}

see full code at: https://ww2.odu.edu/~agodunov/book/programs.html

20

20

Example: relative error for two time steps

𝑥 # 𝑡 = −𝑥 𝑥 𝑡 = 𝑒*+ , 𝑥 0 = 1;

21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

re
l.

er
ro

r

Euler step 0.10
Euler step 0.05

21

The implicit Euler method

Consider (again) the general non-linear first-order ODE

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥, 𝑡 , 𝑥 𝑡" = 𝑥"

with the finite difference grid

Choose point 𝑛 + 1 as the base point and use the first-order backward-
difference finite difference approximation for 𝑥&#

𝑥&'(# =
𝑥&'(− 𝑥&

∆𝑡
= 𝑓(𝑥&'(, 𝑡&'()

Implicit Euler finite difference equation

𝑥&'(= 𝑥& + 𝑓 𝑥&'(, 𝑡&'(∆𝑡 𝑂(∆𝑡!)

where the 𝑂(∆𝑡!) term is included as a reminder of the order of the
local truncation error. 22

22

The implicit Euler method (summary)

𝑥&'(= 𝑥& + 𝑓 𝑥&'(, 𝑡&'(∆𝑡

1. The method explicit since, 𝑓 𝑥&'(, 𝑡&'(depends on 𝑥&'(. If 𝑓(𝑥, 𝑡)
is linear in 𝑥, then 𝑓&'(is linear in 𝑥&'(, and equation above can be
solved directly for 𝑥&'(. If 𝑓(𝑥, 𝑡) is nonlinear in 𝑥, we deal with a
nonlinear FDE, and additional effort is required to solve a non-
linear equation for 𝑥&'(.

2. The method is a singe point method.

3. The FDE requires only one derivative function evaluation per step if
𝑓(𝑥, 𝑡) is linear in 𝑥. If 𝑓(𝑥, 𝑡) is nonlinear then several evaluations
of the derivative function may be required to solve the nonlinear
FDE.

4. The single step truncation error is 𝑂(∆𝑡!), and the global (i.e. total)
error accumulated after 𝑛 steps is 𝑂 ∆𝑡 .

23

23

Comparison of the explicit and implicit Euler methods

The explicit Euler method and the implicit Euler method are both first-
order 𝑂(∆𝑡) methods. The errors in these two methods are comparable
(although of opposite sign) for the same step size.

For nonlinear ODEs, the explicit Euler method is straightforward, but
the implicit Euler method yields a nonlinear FDE, which is more difficult
to solve.

So what is the advantage, if any, of the implicit Euler method?

24

24

https://ww2.odu.edu/~agodunov/book/programs.html

3/6/22

5

Comparison of the explicit and implicit Euler methods

The explicit Euler method and the implicit Euler method are both first-
order 𝑂(∆𝑡) methods. The errors in these two methods are comparable
(although of opposite sign) for the same step size.

For nonlinear ODEs, the explicit Euler method is straightforward, but
the implicit Euler method yields a nonlinear FDE, which is more difficult
to solve.

So what is the advantage, if any, of the implicit Euler method?

Let us consider ODE

𝑑𝑥
𝑑𝑡

+ 𝑥 = 0, 𝑥 0 = 1, 𝑥 𝑡 = 𝑒*+

Explicit Euler 𝑥&'(= 𝑥& + 𝑓 𝑥& , 𝑡& ∆𝑡 gives 𝑥&'(= 1 − ∆𝑡 𝑥&

Implicit Euler 𝑥&'(= 𝑥& + 𝑓 𝑥&'(, 𝑡&'(∆𝑡 gives: 𝑥&'(=
,-

('∆+

25

25

Stability

Explicit Euler

𝑥&'(= 1 − ∆𝑡 𝑥&

For ∆𝑡 > 2.0 the numerical solution oscillates and growth exponentially!26

26

Stability

Implicit Euler yields

𝑥&'(=
𝑥&

1 + ∆𝑡

The error increases as ∆𝑡 increases, but this is accuracy problem, not a
stability problem.

27

27

Stability (summary)

The implicit Euler method is unconditionally stable, whereas the explicit
Euler method is conditionally stable.

28

28

Truncation error

For both methods the total error is 𝑂 ∆𝑡 .

What if we make ∆𝑡 smaller and smaller?

29

29

Modified Euler: predictor-corrector method.

• First-order explicit Euler method leads to simple FDE. However the
method is conditionally stable.

• Implicit first-order order Euler method leads to nonlinear equations,
however it is unconditionally stable.

• Predictor-corrector method maintains advantages of both methods
(linear FDEs and unconditionally stable) while removing the
disadvantages of both methods (conditional stability and non-linear
FDEs).

30

30

3/6/22

6

Modified Euler: predictor-corrector method.

Consider (again) the general non-linear first-order ODE

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥, 𝑡 , 𝑥 𝑡" = 𝑥"

Choosing 𝑛 + ⁄1 2 as a base point

𝑥&'(= 𝑥&'(/! + 𝑥&'(/!
∆𝑡

2
+
1
2
𝑥&'(/!
∆𝑡!

2!
+
1
6
𝑥&'(/!
∆𝑡)

2)
+ ⋯

𝑥& = 𝑥&'(/! − 𝑥&'(/!
∆𝑡

2
+
1
2
𝑥&'(/!
∆𝑡!

2!
−
1
6
𝑥&'(/!
∆𝑡)

2)
+ ⋯

The difference

𝑥&'(/!
=

𝑥&'(− 𝑥&
∆𝑡

+ 𝑂(∆𝑡))

Dropping the 𝑂(∆𝑡)) terms gives

𝑥&'(= 𝑥& + 𝑓(𝑥&' ⁄(! , 𝑡&' ⁄(!)∆𝑡

Equation is the implicit mid-point finite difference equation
31

31

Modified mid-point

𝑥&'(= 𝑥& + 𝑓(𝑥&' ⁄(! , 𝑡&' ⁄(!)∆𝑡

Two unknowns: 𝑥&'(and 𝑥&' ⁄(!

Method 1: modified mid-point

step 1: using Euler method for 𝑥&' ⁄(!

𝑥&' ⁄(!
1(= 𝑥& +

1
2
∆𝑡 𝑓(𝑥& , 𝑡&)

step 2:

𝑥&'(1! = 𝑥& + 𝑓(𝑥&' ⁄(!
1(, 𝑡& + ∆𝑡/2)∆𝑡

32

32

Accuracy analysis

Let us consider ODE (again)

𝑑𝑥
𝑑𝑡

= 𝑎𝑥, 𝑥 0 = 1, 𝑥 𝑡 = 𝑒*$+

𝑥&' ⁄(!
1(= 𝑥& +

1
2
∆𝑡 𝑓 𝑥& , 𝑡& = 𝑥& 1 +

1
2
𝑎∆𝑡

Substituting into

𝑥&'(1! = 𝑥& + 𝑓 𝑥&' ⁄(!
1(, 𝑡& +

∆𝑡
2

∆𝑡 = 𝑥& + 𝑎𝑥& 1 +
1
2
𝑎∆𝑡 ∆𝑡

gives

𝑥&'(
1! = 𝑥& 1 + 𝑎∆𝑡 +

1
2
𝑎!∆𝑡!

Where (
!
𝑎!∆𝑡! is a correction to explicit Euler

The local truncation error is 𝑂(∆𝑡))
33

33

Modified Euler

𝑥&'(= 𝑥& + 𝑓(𝑥&' ⁄(! , 𝑡&' ⁄(!)∆𝑡

Two unknowns: 𝑥&'(and 𝑥&' ⁄(!

Writing Taylor series for. 𝑓&'(and 𝑓& using 𝑓&' ⁄(! as the base point and
adding together yields

𝑓&' ⁄(! =
1
2
𝑓&'(+ 𝑓& + 𝑂(∆𝑡!)

Then

𝑥&'(= 𝑥& +
1
2
𝑓&'(+ 𝑓& ∆𝑡 + 𝑂(∆𝑡))

But, we still don’t know 𝑓&'(.

For linear ODEs equation it can be solved directly, but for non-linear
ODEs must be solved iteratively.

However, there is a way …
34

34

Modified Euler

𝑥&'(= 𝑥& +
1
2
𝑓&'(+ 𝑓& ∆𝑡 + 𝑂(∆𝑡))

Step 1: predict 𝑥&'(using first-order explicit Euler

𝑥&'(2 = 𝑥& + 𝑓 𝑥& , 𝑡& ∆𝑡

Step 2: Correct 𝑥&'(

𝑥&'(3 = 𝑥& +
1
2
𝑓(𝑥&'(2 , 𝑡&'() + 𝑓 𝑥& , 𝑡& ∆𝑡

This two-step method is known as the modified Euler predictor-
corrector method.

35

35

Accuracy analysis

Let us consider ODE (again)

𝑑𝑥
𝑑𝑡

= 𝑎𝑥, 𝑥 0 = 1, 𝑥 𝑡 = 𝑒*$+

𝑥&'(2 = 𝑥& +
1
2
𝑎𝑥&∆𝑡 = 𝑥& 1 + 𝑎∆𝑡

Substituting into

𝑥&'(3 = 𝑥& +
1
2
𝑓(𝑥&'(2 , 𝑡&'() + 𝑓 𝑥& , 𝑡& ∆𝑡

gives

𝑥&'(3 = 𝑥& +
1
2
𝑎𝑥& + 𝑎𝑥& 1 + 𝑎∆𝑡 ∆𝑡 = 𝑥& 1 + 𝑎∆𝑡 +

1
2
𝑎!∆𝑡!

The local truncation error is 𝑂(∆𝑡))

And we have the same answer as the modified mid-point method!
36

36

3/6/22

7

Summary for the modifier Euler method

𝑥&'(2 = 𝑥& + 𝑓 𝑥& , 𝑡& ∆𝑡

𝑥&'(3 = 𝑥& +
1
2
𝑓(𝑥&'(2 , 𝑡&'() + 𝑓 𝑥& , 𝑡& ∆𝑡

1. The FDE is an explicit predictor-corrector set

2. The method is a single-point, two-step, predictor-corrector method

3. The FDE’s global error is 𝑂(∆𝑡!)

4. The FDE is consistent and conditionally stable, and thus,
convergent.

37

37

Example: C++ predictor corrector
/*---
Program to solve 1st order Ordinary Differential Equations
x'(t) = f(t,x)
method: modified Euler method (predictor-corrector)
input ...
f(t,x)- function supplied by a user
ti - initial value for an independent variable (t)
xi - initial value for a function x(t)
tf - find solution for this point t
output ...
xf - solution at point tf, i.e. x(tf)

---*/
double euler1m(double(*f)(double, double), double ti, double xi, double tf)
{

double xf;
xf = xi + f(ti,xi)*(tf-ti);
xf = xi + (f(ti,xi)+f(tf,xf))*0.5*(tf-ti);

return xf;
}

see full code at: https://ww2.odu.edu/~agodunov/book/programs.html

38

38

Example: compare explicit Euler and predictor-corrector

𝑥 # 𝑡 = −𝑥 𝑥 𝑡 = 𝑒*+ , 𝑥 0 = 1;

for explicit Euler and predictor-corrector

𝑑𝑡 = 0.2 𝑑𝑡 = 0.1

39

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
l.

er
ro

r

Euler
Modified Euler

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
l.

er
ro

r

Euler
Modified Euler

39

Part 3b:

Single-point methods

Runge-Kutta methods

40

Runge-Kutta methods

Runge-Kutta methods are a family of single point multi-step methods.

Runge-Kutta methods propagate a solution over an interval by
combining information from several Euler-style steps, and then using
the information obtained to match a Taylor series expansion up to some
order.

For many scientific users, fourth-order Runge-Kutta is not just the first
word on solving ODE, but the last word as well

41

41

Basic idea: 𝑥J 𝑡 = 𝑓(𝑥, 𝑡)

Assume that 𝑥&'(− 𝑥& can be written as a weighted sum of several
∆𝑥4 , where each ∆𝑥4 is evaluated as ∆𝑡 multiplied by the derivative
function 𝑓(𝑥, 𝑡), evaluated at some point in the range 𝑡& ≤ 𝑡 ≤ 𝑡&'(and
𝐶4 are the weighting factors. Thus,

𝑥&'(− 𝑥& = 𝐶(∆𝑥(+ 𝐶!∆𝑥! + 𝐶)∆𝑥) + ⋯

42

42

https://ww2.odu.edu/~agodunov/book/programs.html

3/6/22

8

Second-order Runge-Kutta: 𝑥J 𝑡 = 𝑓(𝑥, 𝑡)

Assume that

𝑥&'(= 𝑥& + 𝐶(∆𝑥(+ 𝐶!∆𝑥!
let ∆𝑥(= 𝑓 𝑥& , 𝑡& ∆𝑡 explicit Euler

let ∆𝑥! = 𝑓 𝑥& + 𝛽∆𝑥(, 𝑡& + 𝛼∆𝑡 ∆𝑡, is evaluated between 𝑡& ≤ 𝑡 ≤ 𝑡&'(
and 𝛼 and 𝛽 are to be determined.

Thus, we have four unknowns: 𝐶(, 𝐶! , 𝛼, 𝛽.

Let ∆𝑡 = ℎ (easier notation)

𝑥&'(= 𝑥& + 𝐶(ℎ𝑓& + 𝐶!ℎ𝑓 𝑥& + 𝛽∆𝑥(, 𝑡& + 𝛼ℎ

Expressing 𝑓(𝑥, 𝑡) in a Taylor series at grid point 𝑛 gives

𝑓 𝑥, 𝑡 = 𝑓& +
𝑑
𝑑𝑡
𝑓& ∆𝑡 +

𝑑
𝑑𝑥

𝑓& ∆𝑥 + ⋯

Evaluating 𝑓(𝑥, 𝑡) at 𝑡 = 𝑡& + 𝛼ℎ (i.e. ∆𝑡 = 𝛼ℎ)

and 𝑥 = 𝑥& + 𝛽∆𝑥(= 𝑥& + 𝛽𝑓&∆𝑡 (i.e. ∆𝑥 = 𝛽𝑓&∆𝑡) gives 43

43

Second-order Runge-Kutta (cont.)

from the slide before: ∆𝑡 = 𝛼ℎ and ∆𝑥 = 𝛽𝑓&ℎ

𝑓 𝑥& + 𝛽𝑓&∆𝑡, 𝑡& + 𝛼ℎ = 𝑓& + 𝛼ℎ𝑓+# P
&
+ 𝛽ℎ𝑓& 𝑓,# P

&
+ 𝑂 ℎ!

then

𝑥&'(= 𝑥& + 𝐶(ℎ𝑓& + 𝐶!ℎ𝑓 𝑥& + 𝛽∆𝑥(, 𝑡& + 𝛼ℎ =

𝑥&'(= 𝑥& + 𝐶(ℎ𝑓& + 𝐶!ℎ 𝑓& + 𝛼ℎ𝑓+# P
&
+ 𝛽ℎ𝑓& 𝑓,# P

&
+ 𝑂(ℎ))

Now we match it to the Taylor series for 𝑥(𝑡) through second-term

𝑥&'(= 𝑥& + 𝑥&# ℎ +
1
2
𝑥&##ℎ! + ⋯

𝑥&# = 𝑓 𝑥& , 𝑡& = 𝑓&

𝑥&## = 𝑓&# =
𝑑𝑓
𝑑𝑡
P
&
= 𝑓+# P

&
ℎ + 𝑓,# P

&

𝑑𝑥
𝑑𝑡
P
&
= 𝑓+# P

&
ℎ + 𝑓,# P

&
𝑓&

𝑥&'(= 𝑥& + 𝑓&ℎ +
(

!
ℎ! 𝑓+# + 𝑓,#𝑓& where the derivatives are evaluated at 𝑛.44

44

Second-order Runge-Kutta (cont.)

Equating

𝑥&'(= 𝑥& + 𝐶(ℎ𝑓& + 𝐶!ℎ 𝑓& + 𝛼ℎ𝑓+# P
&
+ 𝛽ℎ𝑓& 𝑓,# P

&
+ 𝑂(ℎ))

and

𝑥&'(= 𝑥& + 𝑓&ℎ +
1
2
ℎ! 𝑓+# + 𝑓,#𝑓& + 𝑂(ℎ))

1) 𝐶(+ 𝐶! = 1

2) 𝐶!𝛼 =
1
2

3) 𝐶!𝛽 =
1
2

There equations with four unknows. Infinite number of possibilities

45

45

Second-order Runge-Kutta (cont.)

𝑥&'(= 𝑥& + 𝐶(ℎ𝑓& + 𝐶!ℎ𝑓 𝑥& + 𝛽∆𝑥(, 𝑡& + 𝛼ℎ

1) 𝐶(+ 𝐶! = 1, 2) 𝐶!𝛼 =
(

!
, 3) 𝐶!𝛽 =

(

!

Choice 1: 𝐶(= 1, 𝐶! = 0,

𝑥&'(= 𝑥& + ℎ𝑓(𝑥& , 𝑡&) first-order explicit Euler

Choice 2: 𝐶(= 𝐶! =
(

!
, 𝛼 = 𝛽 = 1

𝑥&'(= 𝑥& +
(

!
ℎ 𝑓 𝑥& , 𝑡& + 𝑓(𝑥& + 𝑓&ℎ, 𝑡& + ℎ) the predictor-corrector method

Choice 3: 𝐶(= 0, 𝐶! = 1, 𝛼 = 𝛽 = (

!

𝑥&'(= 𝑥& + ℎ𝑓 𝑥& +
(

!
𝑓&ℎ, 𝑡& +

(

!
ℎ the mid-point method

46

46

Second-order Runge-Kutta (cont.)

In general literature, Runge-Kutta formulas frequently denote the ∆𝑥4 by 𝑘4
Thus, the second-order Runge-Kutta

𝑥&'(= 𝑥& +
1
2
ℎ 𝑓 𝑥& , 𝑡& + 𝑓(𝑥& + 𝑓&ℎ, 𝑡& + ℎ)

is given as

𝑥&'(= 𝑥& +
1
2
𝑘(+ 𝑘!

𝑘(= ℎ𝑓 𝑥& , 𝑡& = ℎ𝑓&
𝑘! = ℎ𝑓(𝑥& + 𝑘(, 𝑡& + ℎ)

(remember ℎ = ∆𝑡)

47

47

Fourth – order Runge-Kutta

4th order Runge-Kutta is very popular in physics

𝑥&'(= 𝑥& +
1
6
𝑘(+ 2𝑘! + 2𝑘) + 𝑘5 + 𝑂(ℎ6)

𝑘(= ℎ𝑓(𝑥& , 𝑡&)

𝑘! = ℎ𝑓 𝑥& +
𝑘(
2
, 𝑡& +

ℎ
2

𝑘) = ℎ𝑓 𝑥& +
𝑘!
2
, 𝑡& +

ℎ
2

𝑘5 = ℎ𝑓(𝑥& + 𝑘) , 𝑡& + ℎ)

Summary: (characteristics can be explored using equation 𝑥 # + 𝛼𝑥 = 0)

1. RK4 is explicit and require four derivative function evaluations per step.

2. RK4 is consistent, 𝑂 ℎ6 locally and 𝑂(ℎ5) globally

3. RK4 is conditionally stable

4. Since RK4 is consistent and conditionally stable, thus it’s convergent
48

48

3/6/22

9

Example: C++ RK 4th order
/*---
Program to solve 1st order Ordinary Differential Equations x'(t) = f(t,x)
method: 4th-order Runge-Kutta method
input ...
f(t,x)- function supplied by a user
ti - initial value for an independent variable (t)
xi - initial value for a function x(t)
tf - find solution for this point t
output ...
xf - solution at point tf, i.e. x(tf)

---*/
double rk4_1st(double(*f)(double, double), double ti, double xi, double tf)
{

double xf;
double h,k1,k2,k3,k4;
h = tf-ti;
k1 = h*f(ti,xi);
k2 = h*f(ti+h/2.0,xi+k1/2.0);
k3 = h*f(ti+h/2.0,xi+k2/2.0);
k4 = h*f(ti+h,xi+k3);
xf = xi + (k1 + 2.0*(k2+k3) + k4)/6.0;
return xf;

}
see full code at: https://ww2.odu.edu/~agodunov/book/programs.html

49

49

Example: relative error Runge-Kutta 4th order

𝑥 # 𝑡 = −𝑥 𝑥 𝑡 = 𝑒*+ , 𝑥 0 = 1;

𝑑𝑡 = 0.1

Runge-Kutta Euler

ATTENTION: note the scale differences – a few orders better for RK
50

0 1 2 3 4 5 6
t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

re
l.

er
ro

r

10-6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
l.

er
ro

r

Euler
Modified Euler

50

Error estimation for single-point methods

For a single step

𝑥&'(= 𝑥&'(+ 𝐴ℎ7'(

where 𝑥&'(is the exact solution at 𝑡&'(, 𝑥&'(is the approximate solution
and 𝐴ℎ7'(is local truncation error.

Doing calculations for ℎ and twice with ⁄ℎ 2 steps we can estimate the local
truncation error

𝐸𝑟𝑟𝑜𝑟 = 𝐴ℎ7'(=
27

(27 − 1)
𝑥&'(⁄ℎ 2 − 𝑥 &'({ℎ}

where 𝑥&'({ℎ} is solution with with ℎ step and 𝑥&'(⁄ℎ 2 is the solution with
two ⁄ℎ 2 steps.

If 𝐸𝑟𝑟𝑜𝑟 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 increase (double) the step size. If 𝐸𝑟𝑟𝑜𝑟 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒,
decrease (halve) the step size.

This method of error estimation requires 200 percent more work.
Consequently, it should be used only occasionally. 51

51

Step-size control

Let us suppose that a step of length ℎ& has just been completed, and also
suppose that it is possible to estimate the local error 𝑒&'(of the computed
simulation 𝑥&'(.

A widely accepted formula for predicting a step-size ℎ&'(, following a
successful step of size ℎ& , is

ℎ&'(= 0.9ℎ&
𝑇

𝑒&'(

(
8'(

, 𝑒&'(≤ 𝑇

If 𝑒&'(> 𝑇, we can use the formula above for estimation, or just reduce
the step-size by a factor of 2.

More sophisticated schemes, based on error estimates at two or more
successive steps, have been devised for step-size control. These are
employed in some computer packages for the solution of differential
equations.

52

52

Algorithm

let 𝑇𝑜𝑙 is desired local tolerance, and 𝐸𝑟𝑟 = 𝑒&'(is calculated local error
if Err <= Tol

accept solution
calculate new step as min between the two

a) ℎ&'(= 0.9ℎ&
9

:-;<

<
=;<

where p=4 for RK 4th order

b) ℎ&'(= 2ℎ& (no more than twice the old step)

if Err > Tol
come back and start from 𝑥& with a smaller step as max

between the two

a) ℎ&'(= 0.9ℎ&
9

:-;<

<
=;<

b) ℎ&'(= 0.5ℎ& (decrease the old step by two)

How to calculate 𝐸𝑟𝑟?
53

53

RKF45 – one of the most popular versions of RK
Runge-Kutta-Fehlberg with error estimation (for step size control)
𝑘(= ℎ𝑓(𝑥& , 𝑡&)

𝑘! = ℎ𝑓 𝑥& +
𝑘(
4 , 𝑡& +

ℎ
4

𝑘) = ℎ𝑓 𝑥& +
3
32𝑘(+

9
32𝑘!, 𝑡& +

3
8ℎ

𝑘5 = ℎ𝑓 𝑥& +
1932
2197𝑘(−

7200
2197𝑘! +

7296
2197𝑘), 𝑡& +

12
13ℎ

𝑘6 = ℎ𝑓 𝑥& +
439
216𝑘(−8𝑘! +

3680
513 𝑘) −

845
4104𝑘5, 𝑡& +ℎ

𝑘> = ℎ𝑓 𝑥& −
8
27𝑘(+2𝑘! −

3544
2565𝑘) +

1859
4104𝑘5 −

11
40𝑘6, 𝑡& +

1
2ℎ

𝑥&'(= 𝑥& +
16
135𝑘(+

6656
12825𝑘) +

28561
56430𝑘5 −

9
50𝑘6 +

2
55𝑘>

𝐸𝑟𝑟𝑜𝑟 =
1
360𝑘(−

128
4275𝑘) −

2197
75240𝑘5 +

1
50𝑘6 +

2
55𝑘> +𝑂(ℎ

>) 54

54

https://ww2.odu.edu/~agodunov/book/programs.html

3/6/22

10

Example: C++ RKF45 (part of a code)

while (ti < tmax)
tf = ti + dt;
[xf,er5] = RKF51(dx,ti,xi,tf);
er5 = abs(er5);
if (er5 <= tolerance)

i = i + 1;
x(i) = xf;
t(i) = tf;
ti = tf;
xi = xf;
dt = min(0.9*dt*(abs(tolerance/er5)).^(1/6),2.0*dt);

else
dt = max(0.9*dt*(abs(tolerance/er5)).^(1/6),0.5*dt);

end
end

55

55

Example: step-size control

equation

𝑑𝑥
𝑑𝑡

=
100

1 + 10000𝑡!
, 𝑥 −1 = arctan(−100) , 𝑥 𝑡 = arctan 100𝑡

56-1 -0.5 0 0.5 1 1.5
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x(
t)

RKF45
analytic solution

56

Example: RKF45 with large step size

𝑥 # 𝑡 = −𝑥 𝑥 𝑡 = 𝑒*+ , 𝑥 0 = 1;

𝑑𝑡 = 0.8

57

0 1 2 3 4 5 6
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
t)

Euler
RKF45
Analytic

57

Summary

• Single-point methods work well for both smoothly varying problems
and non-smoothly varying problems.

• The first-order Euler methods are useful for illustrating the basic
features of finite difference methods for solving initial-value ODEs,
but they are too inaccurate to be of any practical value.

• The second-order single-point methods are useful for illustrating
techniques for achieving higher-order accuracy, but they also are too
inaccurate to be of much practical value.

• Runge-Kutta methods can be developed for any order desired. The
fourth-order Runge- Kutta method is the method of choice when a
single-point method is desired.

• RKF45 provides error estimation for step-size control

58

58

Part 4:

Additional information

59

Troubles with single-point methods

RK methods introduce intermediate points between 𝑛 and 𝑛 + 1.

High-order RK methods, while successful, require a large number
derivative function evaluations, i.e. calls 𝑓(𝑥, 𝑡).

Higher-order methods requiring fewer derivative function evolutions are
desirable.

Multipoint methods, which use more than one known point, have this
capability.

60

60

3/6/22

11

Forth-order Adams-Bashforth method

One of the most popular multipoint methods is the fourth order Adams-
Bashforth methods, which is obtained by fitting a third-degree Newton
backward difference polynomial to base point 𝑛 and integrating from
point 𝑛 the point 𝑛 + 1.

After long and tedious work ….

𝑥&'(= 𝑥& +
ℎ
24

55𝑓& − 59𝑓&*(+ 37𝑓&*! − 9𝑓&*) +
251
720

ℎ6𝑥 6 (𝜏)

Consistency and stability analysis for multipoint measures are quite
tedious and complicated.

The above method is convergent, conditionally stable (stability is much
better than for RK 4th order) and the global error is 𝑂 ℎ5 .

However, error estimation and error control are difficult.

There are very many variations of the general multipoint methods.
61

61

Stiff ODE

Definitions of stiffness

• the step size required for stability is much
smaller than the step size required for accuracy.

• if it contains some components of the solution that decay rapidly
compared to other components of the solution.

• if the step size based on computational time is too large to obtain an
accurate solution.

There is a set of methods developed by Gear (1971) for solving stiff
ODEs

Good package: LSODE developed in Lawrence Livermore National
Laboratory (LLNL)

62

-1 -0.5 0 0.5 1 1.5
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x(
t)

RKF45
analytic solution

62

Summary of methods and results

Errors in solutions of the radiation problem* 𝑇 # = −𝛼 𝑇5 − 𝑇$5 , 𝑇 0 = 𝑇"

* from Numerical Methods for engineers and scientists by J. Hoffman 63

63

Books

One of the

64

64

