
One Dimensional Solid (Crystal)
Lecture Notes 2/5/2013

Consider N atoms in a row.To make life easier we make following approxi-
mation:

a)some electrons are bound to the nucleus and some are free. In particular,
say we have q electrons per atom are free, i. e, in total qN free electrons are
present.
b)Bound electrons of one atom do not interact with bound electrons of an-
other atom.
c)Potential is periodic and approximated as delta function which allows one
bound state.
It looks as in figure below:

V (x) = −α
N∑
j=0

δ(x− ja)

Now, we want to solve Schrodinger equation for the above system. Before
doing so, lets first define an operator D̂.

D̂ψ(x) = ψ(x+ a)

D̂is called displacement operator.
For a periodic potential [V(x)=V(x+a)],
D̂ commutes with hamiltonian Ĥ.

[D̂, Ĥ] = 0

It means we can find joint eigen function for them. Moreover, D̂ is not her-
mitian, so its eigenvalue may not be real.
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We have,

D̂ψ(x) = ψ(x+ a)

= γψ(x)

Assume:
ψ(0) = ψ(Na)

then

ψ(0) = (D̂)Nψ(0)

= γNψ(0)

Looking at this equation we can see that that γ can have following form:

γ = ei(
2π
N)

or even, γ = ei(
2π
N

)n,n is an integer.

Then we have

D̂ψ(0) = einφψ(x)

where 2π
N

= φ

ψ(x− a) = e−inφψ(x)

We will now solve Schrodinger equation in the interval ja−ε ≤ x ≤ (j+1)a−ε
since we can recover the full solution simply by applying translations by a.

Introduce y = x− ja; y = −ε...a− ε,then

−h̄2

2m

∂2ψ(y)

∂y2
+ V (y)ψ(y) = Eψ(y).....(1)

For y > ε potential is zero, so we have free hamiltonian,thus we can write
the solution as,

ψ(y) = Aeiky +Be−iky

where,k =
√

2mE
h̄

Now, we apply boundary condition:
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In region 0 < y < a and ε > 0 but very small,we can write

ψ(−ε) = ψ(a− ε)e−inφ

= e−inφ(Aeik(a−ε) +Be−ik(a−ε))

when ε→ 0,
A+B = e−inφ(Aeika +Be−ika)

A
(
1− eikae−inφ

)
= B

(
e−inφe−ika − 1

)
A =

(
e−ika − einφ

einφ − eika

)
B

Integrating eqn(1) in [-ε,ε], we get

∫ ε

−ε

−h̄2

2m

∂2ψ(y)

∂y2
dy +

∫ ε

−ε
V (y)ψ(y)dy = E

∫ ε

−ε
ψ(y)dy

−h̄2

2m

[
∂ψ(y)

∂y
|+ε −

∂ψ(y)

∂y
|−ε
]
− α

∫ +ε

−ε
δ(y)ψ(y)dy = 0

h̄2

2m

[
−ik(A−B) + ike−inφ(Aeika −B−ika

]
= α(A+B)

ikh̄2

2m

[
A(eikae−inφ − 1) +B(1− e−ikae−inφ)

]
=
ikh̄2

2m

[
2B(1− e−ikae−inφ)

]
= α(A+B)

1− e−ikae−inφ =
2mα

kh̄2

1

2i

[
e−ika − einφ

einφ − eika
+ 1

]
(
eika − einφ − e−inφ + e−ika

]
=

2mα

kh̄2 sin(ka)

cos(ka)− cos(nφ) =
maα

h̄2

sin(ka)

ka

calling ka = z,we get

cos(z)−
(
maα

h̄2

)
sin(z)

z
= cos(nφ)
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Figure 1: PLOT of f(z) vs Z
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We can find the sequence of solutions for z by observing that the r.h.s.
has exactly N/2 unique values between -1 and 1, after which the cos repeats
itself. Therefore, from the lowest z where the function f(z) crosses into the
±1 band up, there are N/2 unique solutions, followed by another N/2 for
the second crossing etc.

Since k = z
a

we can find the energy eigenvalues as

E =
z2h̄2

2ma2

Plot for energy bands

Consequences:
Each of the allowed eigenstates can be filled by (at most) 2 electrons (one spin
up, one spin down), so the first band can accommodate N electrons, as well
as the 2nd band and so on. The crystal behaves as an insulator if the allowed
energy bands are either filled or empty.The crystal behaves as a conductor if
one or more bands are partly filled.The crystal is a semiconductor if one or
two bands are slightly filled or slightly empty (“doped”) or if the separation
between the full and the empty band is small.
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