Lecture Notes: 22/01/2013

Density Matrix:

If N_{i} particles are in the state $\left|\psi_{i}\right\rangle$ then the density matrix for such mixed state is,

$$
\hat{\rho}=\sum p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

and $p_{i}=\frac{N_{i}}{N}, \sum_{i} p_{i}=1$
The polarization is defined as,
$P_{j}=\sum_{i} p_{i}\left\langle\psi_{i}\right| \sigma_{j}\left|\psi_{i}\right\rangle, j=0,1,2,3$. We always have $P_{0}=1$ and $0 \leq|\vec{P}| \leq 1$. If \hat{O} is any observable then average of expectation value of \hat{O} is,

$$
\langle\bar{O}\rangle=\frac{1}{2} \sum_{j} \operatorname{tr}\left(\hat{O} \sigma_{j}\right) P_{j}
$$

Again, $\left\{\frac{1}{\sqrt{2}} \sigma_{j}\right\}$ forms a basis for operators. We can write $\hat{\rho}$ as,

$$
\hat{\rho}=\frac{1}{2} \sum_{j} \operatorname{tr}\left(\rho \sigma_{j}\right) \sigma_{j}
$$

Also,

$$
\begin{gathered}
\operatorname{tr}\left(\rho \sigma_{j}\right)=\sum_{k}\langle k| \sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \sigma_{j}|k\rangle \\
\left.=\sum_{i} p_{i}\left\langle\psi_{i}\right| \sigma_{j}\left|\left(\sum_{k}|k\rangle k\langle k|\right)\right| \psi_{i}\right\rangle \\
=\sum_{i} p_{i}\left\langle\psi_{i}\right| \sigma_{j}\left|\psi_{i}\right\rangle \\
=P_{j}
\end{gathered}
$$

Therefore, $\hat{\rho}=\frac{1}{2} \sum_{j} P_{j} \sigma_{j}$

Multi Particle System:

If we want to describe N particles then we need $V^{R^{3 N}}$ dimensional vector space. the most general basis for this space will be, $\left|x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots x_{N}, y_{N}, z_{N}\right\rangle$
the wave function will look like,
$\int \ldots \int d x_{1} d x_{2} \ldots . d x_{N} d y_{1} \ldots d y_{N} d z_{1} \ldots . d z_{N} \psi\left(x_{1}, y_{1}, z_{1} \ldots \ldots x_{N}, y_{N}, z_{N}\right)\left|x_{1}, y_{1}, z_{1} \ldots \ldots x_{N}, y_{N}, z_{N}\right\rangle$

But there is always possibility that physical condition may reduce the dimension of this vector space.

Operators:

In case of two spin half particles, for instance, we can introduce z-component of spin of 1st particle as $S_{z 1}=S_{z} \otimes 1$. This acts only on the first basis. Similarly, we can introduce operator for second particle which will be $S_{z 2}=1 \otimes S_{z}$.

In the same way, consider a three dimensional N particle vector space. If we let all particle move around and ask: what is x-component of position of $2^{\text {nd }}$ particle (not caring anything else)?
Ans: Obviously the answer has to be a real number because it has to be somewhere. $x_{2}=-\infty \ldots+\infty$. The corresponding operator that describes this observable is $X_{2}=1 \otimes 1 \otimes 1 \otimes X \otimes 1 \otimes \ldots \otimes 1$.

To calculate the probability we have to find a projection operator, which would be,
$\hat{P_{x 2}}=\int \ldots \int d x_{1} d x_{3} \ldots d x_{N} d y_{1} \ldots . d y_{N} d z_{1} \ldots . d z_{N} .\left|x_{1}, y_{1}, z_{1} \ldots x_{N}, y_{n}, z_{N}\right\rangle\left\langle x_{1}, y_{1}, z_{1} \ldots x_{N}, y_{n}, z_{N}\right|$ x_{2} is fixed and integration is carried over all other variables.
The probability to measure x_{2} is,

$$
\begin{gathered}
\delta P\left(x_{2}, x_{2}+\delta x\right)=\left[\langle\psi| \hat{P_{x 2}}|\psi\rangle\right] \delta x= \\
{\left[\int \ldots \int d x_{1} d x_{3} \ldots d x_{N} d y_{1} \ldots d y_{N} d z_{1} \ldots d z_{N} \psi^{*}\left(x_{1}, y_{1}, z_{1} \ldots \ldots x_{N}, y_{N}, z_{N}\right) \psi\left(x_{1}, y_{1}, z_{1} \ldots \ldots x_{N}, y_{N}, z_{N}\right)\right] \delta x}
\end{gathered}
$$

Time Evolution:

The time evolution is governed by Schrodinger Equation,

$$
i \hbar \frac{\partial|\psi\rangle}{\partial t}=H|\psi\rangle
$$

Here H should be expressed in terms of all degrees of freedom.

Two Particle Hilbert Space:

Each particle is described by the vector space C. Two particle live in $C_{1} \otimes C_{2}$ dimensional vector space.
We can take $\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)$ a basis for $C_{1} \otimes C_{2}$. Then the most general state will
be,

$$
\left.|\psi\rangle=\sum_{k_{1}} \sum_{k 2} C_{k 1} C_{k 2}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)
$$

If we take two spin $\frac{1}{2}$ particles. Then, Basis for $C_{1},\left|k_{1}\right\rangle=\left\{|\uparrow\rangle_{1},|\downarrow\rangle_{1}\right\}$
Basis for $C_{2},\left|k_{2}\right\rangle=\left\{|\uparrow\rangle_{2},|\downarrow\rangle_{2}\right\}$
The most general state in this vector space will be,

$$
\left.|\psi\rangle=\sum_{k_{1}} \sum_{k 2} C_{k 1} C_{k 2}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)
$$

If $S=0$ then

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{1} \otimes|\downarrow\rangle_{2}-|\downarrow\rangle_{1} \otimes|\uparrow\rangle_{2}\right)
$$

It is not eigenstate for $S_{z 1}$ and $S_{z 2}$ as well but it is eigenstate for $S_{z t o t a l}=$ $S_{z 1}+S_{z 2}$

Case of two Non-Interacting Particles:

The Hamiltonian can be defined as,

$$
H=\frac{p_{1}^{2}}{2 m_{1}}+V_{1}\left(x_{1}\right)+\frac{p_{2}^{2}}{2 m_{2}}+V_{1}\left(x_{2}\right)
$$

We want to solve for $H|\psi\rangle=E|\psi\rangle$
In position space, we can write,
$\left[\frac{-\hbar^{2}}{2 m_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}+V_{1}\left(x_{1}, x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)+\left[\frac{-\hbar^{2}}{2 m_{2}} \frac{\partial^{2}}{\partial x_{2}^{2}}+V_{2}\left(x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)$
In case of non-interacting particles, we can write $\psi\left(x_{1}, x_{2}\right)=\psi\left(x_{1}\right) \psi\left(x_{2}\right)$
With the assumption that

$$
\begin{aligned}
& H_{1} \psi\left(x_{1}\right)=E_{1} \psi\left(x_{1}\right) \\
& H_{2} \psi\left(x_{2}\right)=E_{2} \psi\left(x_{2}\right)
\end{aligned}
$$

Then we will have,

$$
E_{1} \psi\left(x_{1}\right) \psi\left(x_{1}\right)+\psi\left(x_{1}\right) E_{2} \psi\left(x_{1}\right)=E \psi\left(x_{1}\right) \psi\left(x_{2}\right) ; E=E_{1}+E_{2}
$$

Now, method of separation of variable could be used to solve this equation.

Case of two interacting particle:

The Hamiltonian can be defined as,

$$
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+V\left(x_{1}-x_{2}\right)
$$

In this case method of separation of variable will not work so we employ a trick to get rid of this difficulty. We describe the system in new coordinates , $X=X_{c m}=\left(m_{1} x_{1}+m_{2} x_{2}\right) / M$ and $x=x_{r e l}=x_{1}-x_{2}$; then we can write our hamiltonian as

$$
H=\frac{p_{\text {total }}^{2}}{2 M}+\frac{p_{r e l}^{2}}{2 \mu}+V\left(x_{r e l}\right)
$$

In such case the wave function can be written as,

$$
\psi=\psi_{c m}\left(X_{c m}\right) \psi_{r e l}\left(x_{r e l}\right)
$$

where $\psi_{c m}$ is a solution for free particle motion with constant momentum $P_{c m}=p_{\text {total }}$ and $\psi_{\text {rel }}$ is an eigenfunction for the 1-particle Hamiltonian $\frac{p_{\text {rel }}^{2}}{2 \mu}+$ $V\left(x_{r e l}\right)$.

