
1 Born Approximation

We can use time-dependent perturbation theory for an alternative approach
to the scattering problem. Here, we consider only the first order which will
yield an approximation. The idea is that we use Fermi’s Golden Rule to find
the transition rate from a plane wave initial state (along the z-axis) to another
plane wave final state within a small range of momenta (∆p) and directions
(∆Ω) centered on the direction r̂ in which our detector is sitting. As we already
showed, this will yield a finite answer after integrating over the delta-function.
This rate has to be divided by the incoming current density represented by the
initial plane wave to arrive at the cross section.

We describe the initial and final states as follows:

|i >= | ~pin >; ~pin = p0ẑ

|f >= | ~pf >; ~pf = p0r̂(θ, φ).

Applying a perturbation Hp that is not time dependent :

Hp = V eiωpt ωp = ωfi =
E0
f − E0

i

h̄
= 0. (1)

Using Fermi Golden Rule after integration over ∆p,∆Ω:

wif =
2πmpfδΩ

h̄
|mfi|2, (2)

with mfi =< f |Hp|i >. With proper normalization, the incoming plane wave is

< ~r| ~pin >=
1

(2πh̄)3/2
ei ~pin·~r/h̄ (3)

and the incoming current density is ~Jin = 1
(2πh̄)3 ~pin/m. So the elastic cross

section is given by:

dσ

dΩ
=

wif

| ~Jin|
= (2π)4m2h̄2|mfi|2. (4)

If Hp = V (~r) we have:

mfi =< f |V |i > =

∫
d3r

1

(2πh̄)3/2
e−i ~pf ·~r/h̄V (~r)

1

(2πh̄)3/2
ei ~pi·~r/h̄

=
1

(2πh̄)3

∫
d3re−i~q~rV (~r), (5)

where we have defined the momentum transfer ~q =
~pf−~pi
h̄ . In other words,

the matrix element is basically the Fourier Transform of the potential with the
momentum transfer ~q. We note that

q2 =
p2

0

h̄2 (r̂2 + ẑ2 − 2r̂ · ẑ) =
1

h̄2 2p2
0(1− cos(θ)) =

1

h̄2 4p2
0 sin2(θ/2). (6)

For now, assume that the potential is rotationally symmetric. Inside the in-
tegral, we can choose as the z-direction for the integration variable the direction
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of ~q such that ~q = qẑ and we have ~q · ~r = cosϑ.

mfi =
1

(2πh̄)3
2π

∫ +1

−1

d cosϑ

∫ ∞
0

r2dre−iqr cosϑV (r)

=
1

2π2h̄3q

∫ ∞
0

drr sin(qr)V (r)

= − 1

2π2h̄3q

∂

∂q

∫ ∞
0

cos(qr)V (r)dr. (7)

Using that expression we obtain the following differential cross section:

dσ

dΩ
=

4m2

h̄4q2

(
∂

∂q

∫ ∞
0

cos(qr)V (r)dr

)2

(8)

Step Potential If we have the following potential:

V (x) =

{
V0 r < a
0 r > a

(9)

we obtain the following cross section:

dσ

dΩ
=

4m2

h̄4q2
V 2

0

(
∂

∂q

(
sin(qa)

q

))2

=
4m2

h̄4q2
V 2

0

(
a cos(qa)

q
− sin(qa)

q2

)2

(10)

In the limit qa→ 0 the term in brackets can be approximated as

a cos(qa)

q
− sin(qa)

q2
≈ a

q

(
1− 1

2
a2q2 − (1− 1

6
q2a2)

)
= −1

3
qa3 (11)

and the cross section becomes:

dσ

dΩ
=

4m2V 2
0 a

6

9h̄4 , (12)

that gives:

f(θ) = ±2mV0a
3

3h̄2 . (13)

The same result can be gotten from the phase shift analysis in the limit where
both the external momentum) k and the internal momentum k1 ≈

√
2m|V0| are

small.

Modified Coulomb Potential For the Coulomb potential it is not possible
to define the free incoming and outgoing states since the asymptotic behaviour
is V ∼ 1

r .

So we consider a modified Coulomb potential V = Ze2e−µr

r that gives a matrix
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element:

Hfi = Ze2 1

(2π2h̄3)

∫ ∞
0

dr
eiqr − e−iqr

2iq
e−µr

= Ze2 1

(2π2h̄3)2iq

[
−e(iq−µ)0

iq − µ
− −e

(−iq−µ)0

−iq − µ

]
= Ze2 1

(2π2h̄3)(q2 + µ2)
(14)

Hence we have for µ→ 0:

dσ

dΩ
=

4Z2e4m2

h̄4q4

=
4Z2e4m2

16p4
0 sin4(θ/2)

=
Z2α2h̄2c2

16E2
in sin4(θ/2)

. (15)
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