OBSERVABLES

Electron Scattering - what can we measure?

What is the likelihood to find the electron scattered into the detector?

$$
P \sim n_{T} \cdot L=\frac{N_{T}}{A L} \cdot L=\frac{N_{T}^{*}}{A^{*}}
$$

\Rightarrow call $\Delta \sigma=P /\left(\frac{N_{T}}{A}\right)$ (cross section)
$\triangle \sigma$ DEPENDS on the kinematics $\left(E, E_{1}^{\prime}, \theta_{z}\right)$ and is \approx proportional to SIZE of kinematic bin spanned by the detector
${ }^{*}$ Note: $\frac{N_{T}}{A}=\rho\left[\frac{g}{\mathrm{~cm}^{3}}\right] \cdot L[\mathrm{cmm}] \cdot \frac{\text { Avogadro }}{\text { Atomic Height [u ll }}$

Count rate ($\mathrm{L}=$ luminosity):
$\dot{N}=P \cdot \dot{n}_{e l}=\Delta \sigma \cdot \frac{N_{T}}{A} \dot{n}_{e l}=\Delta \sigma \cdot \frac{N_{T}}{A} \frac{I}{e}=\Delta \sigma \cdot L$
In general:
$\Delta \sigma=\Delta \sigma\left(E^{\prime} \ldots E^{\prime}+\Delta E^{\prime}, \theta_{e} \ldots \theta_{e}+\Delta \theta_{e}, \varphi \ldots \varphi+\Delta \varphi\right)$
Limit of infinitesimal acceptance:
$\Delta \sigma=\frac{d^{3} \sigma}{d E^{\prime} d \theta_{e} d \varphi}\left(E^{\prime}, \theta_{e}, \varphi\right) \Delta E^{\prime} \Delta \theta_{e} \Delta \varphi=\frac{d \sigma}{d E^{\prime} d \Omega} \Delta E^{\prime} \Delta \Omega$
(use Jacobian to transform variables)
In case of more particles/observables and finite phase space:
$\Delta \sigma=\iiint_{\substack{\text { Phase } \\ \text { Space }}} \frac{d^{n} \sigma}{d k_{1} d k_{2} \ldots d k_{n}}\left(k_{1} \ldots k_{n}\right) A c c\left(k_{1} \ldots k_{n}\right) d k_{1} d k_{2} \ldots d k_{n}$
where Acceptance is defined by detector boundaries and bin sizes as well as number of observed particles
(inclusive = only 1 , semi-inclusive, exclusive)

Electron Scattering - Theorist's View

What is the transition rate

$$
\begin{aligned}
& W_{i \rightarrow f} ? \\
& \begin{aligned}
\dot{N}_{e, f} & =\dot{N}_{e, i n} \cdot P(i \rightarrow f)=I_{e, i n} \cdot \frac{N_{T}}{A} \cdot \Delta \sigma \\
& =\frac{I_{e, i n}}{A} \cdot N_{T} \cdot \Delta \sigma=\left(\overrightarrow{j_{e, i n}}\right)_{2} \cdot N_{T} \cdot \Delta \sigma
\end{aligned} \\
& \Rightarrow W_{i \rightarrow f}=j_{i n} \cdot \Delta \sigma
\end{aligned}
$$

Fermi's GOLDEN Rule:

$$
\begin{aligned}
& \omega_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|M_{f_{i}}\right|^{2} \Delta \phi-\begin{array}{l}
\text { Phase space } \\
\text { spanned by } \\
\text { dekedro/kinemobiek bi }
\end{array} \\
& m_{f_{i}}=\left\langle\psi_{f}\right| H_{i n t}\left|\psi_{i n}\right\rangle
\end{aligned}
$$

