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We begin with an incoming wave (from the left) which is incident on a 1D “step” potential, V0, at
x ≥ 0. As long as the width of the step is � λ, then this is a good approximation. The situation is similar
to the classical problem of reflection and refraction, and we take the incoming wave to be a Gaussian

ΨI(x, 0) =
1

(π∆2)1/4
eik0(x+a)e−(x+a)2/2∆2

here 〈x〉 = −a, 〈p〉 = ~k0, with the widths ∆x = ∆√
2
, ∆p = ~√

2∆
.

In the case for large ∆, p is well defined and ∆p
p � 1. Then p = ~k0 and E =

~2k20
2m .

We will examine the case where E > V0. The packet hits the barrier at time t ≈ a/v = am/p0. We will look
for the reflected wave (ΨR), the transmitted wave (ΨT ), the reflection coefficient (R), and the transmition
coefficient (T ). The coefficients are given by

R =

∫
|ΨR|2 dx as t→∞;T = 1−R

We solve the plane wave solution through the following steps:
1) Find the normalized eigenfunctions of H
2) Find the overlap 〈ΨE | ΨI〉
3) Time propagate it |ψ(t)〉 =

∑
E e
−iHt/~|ΨE〉 〈ΨE | ΨI〉

4) Identify ΨR, ΨT , and find R and T

Normalized Eigenfunctions
In the region to the left

ΨE(x) = Aeik1x +Be−ik1x k1 =

√
2mE

~
and in the region to the right

ΨE(x) = Ceik2x +De−ik2x k2 =

√
2m(E − V0)

~
We can set D = 0 since there is no wave on the right side of the potential barrier traveling left. Next we
look at the boundary conditions

A+B = C continuity of the wave

ik1(A−B) = ik2C continuity of the derivative

∴ B =
k1 − k2

k1 + k2
A C =

2k1

k1 + k2
A

Checking our limits
1) V0 → 0⇒ k2 = k1, B = 0, and C = 1
2) V0 → E ⇒ k2 = 0, B = 1, and C = 2
then the normalized eigenfunction is

ΨE(x) =
1√
2π

[(
eik1x +

B

A
e−ik1x

)
Θ(−x) +

C

A
eik2xΘ(x)

]
Overlap
We now look at the overlap of the eigenfunction with our incoming wave function

a(k1) = 〈Ψk1 | ΨI〉 =
1√
2π

[ ∫ ∞
−∞

(
e−ik1x +

(
B

A

)∗
eik1x

)
Θ(−x)ΨI(x)dx+

∫ ∞
−∞

(
C

A

)∗
e−ik2xΘ(x)ΨI(x)

]



Now the beauty of using a Gaussian for the incoming wave is that Ψ(x) = 0 ∀ x > 0, so the second term
goes away. Also there’s no momentum overlap ⇒

(
B
A

)∗
eik1x = 0. The first term and ΨI(x) will overlap

only when they are within the Gaussian width. With this our overlap function becomes

a(k1) =
1√
2π

∫ ∞
−∞

e−ik1x
1

(π∆2)1/4
eik0(x+a)e−(x+a)2/2∆2

dx

we can solve this with a couple substitutions, u = x+ a α = 1/2∆2 β = ik0 − ik1

a(k1) =
1√
2π

1

(π∆2)1/4

∫ ∞
−∞

eik1aeβu−αu
2
du

=
1√
2π

1

(π∆2)1/4
eik1aeβ

2/4α

∫ ∞
−∞

e−α(x−β/2α)2dx

=
1√
2π

1

(π∆2)1/4
eik1aeβ

2/4α

√
π

α

so our overlap function is

a(k1) =

(
∆2

π

)1/4

eik1ae−(k1−k0)2∆2/2

Time Propagation
We now apply time propagation to our overlap function to get

Ψ(x, t) =

∫
|Ψk1〉 〈Ψk1 | e−iEk1

t/~ |ΨI〉 dk1 =

∫ ∞
−∞

Ψk1e
−iEk1

t/~a(k1)dk1

doing the full expansion gives

Ψ(x, t) =

(
∆2

π

)1/4 1√
2π

∫ ∞
−∞

e−i~
2k21t/2m~e−(k1−k0)2∆2/2eik1a

[
eik1xΘ(−x)+

B

A
e−ik1xΘ(−x)+

C

A
eik2xΘ(x)

]
dk1

Finding ΨR, ΨT , R, and T
Finding the integral for the first term in the brackets, we realize that this is the original Gaussian evolved
in time, except for the step function Θ(−x). From the first semester (see also Shankar), we know that a
Gaussian wave package evolves by moving to the right with velocity ~k0/(2m) while broadening due to its
momentum width ∆p = ~√

2∆
. Since ∆p << p, we can assume that after sufficiently long time (t → ∞),

the wave packet is completely located on the r.h.s., at x > 0. After applying the factor Θ(−x), this means
that this part of the integral simply disappears as t → ∞: The incoming wave is “swallowed up” and
replaced by the reflected and the transmitted wave.

For the second term we use the fact that e−(k1−k0)2∆2/2 is sharply peaked at k0. Then

∆p

p
� 1 ⇒ ∆k0

k0
� 1 ⇒ B

A
≈ B

A

∣∣∣∣
k1=k0

≡ const.

Apart from this factor, the second term then describes a Gaussian wave package that starts on the
r.h.s. at x = a and travels to the left with momentum −k0. This can be seen directly by replacing the
integration variable k1 with −k1 everywhere which of course doesn’t change the integral, which then reads

ΨII(x, t) =
B

A
Θ(−x)

(
∆2

π

)1/4 1√
2π

∫ ∞
−∞

e−i~
2k21t/2m~e−(k1+k0)2∆2/2eik1(x−a)dk1 =: ΨR(x, t).



Since this Gaussian packet will move to more and more negative x with time, the Theta-function will
equal to 1 and we simply have a left-moving packet representing the reflected wave.

Finding R,

lim
t→∞

R =

∫
|ΨR|2 dx =

∣∣∣∣BA
∣∣∣∣2
k0

=

(√
E0 −

√
E0 − V0√

E0 +
√
E0 − V0

)2

=

(
k1 − k2

k1 + k2

)2

Remember that this is only a good approximation for a plane wave
Now for T

T = 1−R =

(
C

A

)2∣∣∣∣
k0

√
E0 − V0

E0
=

4
√
E0

√
E0 − V0

(
√
E0 +

√
E0 − V0)2

=
4k2

1

(k1 + k2)2

Looking at the probability currents

jI = |A0|2
~k0

m

jR = |B0|2
~k0

m

jT = |C0|2
~k0

m

R =
jR
jI

=
|B0|2

|A0|2

T =
jT
jI

=
|C0|2

|A0|2
k2

k0
=
|C0|2

|A0|2

√
E0 − V0√
E0

Remember that this was all for E > V0. If V0 > E, then we have the decaying exponential, Ce−κxΘ(x),
which was looked at last semester for 1D potentials.


