
Quantum Mechanics II Lecture 2

January 24, 2013

Density Matrix

Assume we have an ensemble of Ntot particles, each of which can be in
one of n states. Then the density matrix of that system can be expressed in
one of two ways:

ρ =
1

Ntot

Ntot∑
i=1

|ψi〉 〈ψi| (1)

ρ =
n∑

i=1

pi |ψi〉 〈ψi| (2)

where pi is the probability of being in state i. Equation 1 assumes that
each particle is in a well defined state and sums over all particles in the
ensemble, while equation 2 sums over all possible states of the particles and
multiplies by the probability of that state.

Claim:
The density matrix contains all possible knowable information about a sys-
tem. This can be proven by showing that the expectation value of any
arbitrary operator can be found with no other knowledge of the system.
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Proof:

First we need to slightly redefine the expectation value of an operator: It
is now an average over the expectation values for all possible states (indicated
by the <> brackets), weighted by probability (indicated by an overbar):〈

O
〉

=
∑
i

pi 〈ψi|O|ψi〉 (3)

We start by taking the trace of the matrix Oρ.1

Tr(Oρ) =
∑
j

〈j|Oρ|j〉

=
∑
i,j

〈j|Opi|ψi〉 〈ψi|j〉

=
∑
i,j

pi 〈ψi|j〉 〈j|O|ψi〉

=
∑
i

pi 〈ψi|O|ψi〉 =
〈
O
〉

(4)

So, all knowable information about the system is contained within the
density matrix.

Vector space of operators

Given some vector space V with basis |j〉. We can now define a corre-
sponding vector space V ⊗ V of all operators on V. Clearly, operators can
be added, multiplied with scalars etc. in a linear fashion. But we can also
define an inner (scalar) product between operators,

O1 · O2 = Tr(O†
1O2). (5)

This can be proven to fulfill all of the requirements for an inner product; it
also makes sense if you think of an operator as a n× n matrix which can be
“stretched” into a single column by arranging the second column below the
first one and so on. In that case, the trace is just the usual scalar product
between the two resulting “vectors”. We can now find orthonormal bases for
this vector space; one “obvious” example is

Oij =
1√
n
|i〉 〈j| . (6)

1The trace of a square matrix is the sum of its diagonal components.
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As a consequence, we can expand any operator in this basis, with coefficients
given by the inner product:

P =
∑
i,j

Tr(O†
ijP)Oij. (7)

Polarization

Let’s consider the vector space for operators on spin-1
2

particles, V4. In
this space there are a multitude of bases that will span the entire space, but
only two that we normally focus on:

The ”special basis”:
1√
2
| ↑><↑ |, 1√

2
| ↑><↓ |, 1√

2
| ↓><↑ |, 1√

2
| ↓><↓ |

The Pauli spin matrix basis:
1√
2
σ0,

1√
2
σx,

1√
2
σy,

1√
2
σz

We can write any operator in that vector space as a sum of the basis
vectors:

O =
1√
2

3∑
j=0

ojσj (8)

or

O =
1√
2

∑
j

Tr(O 1√
2
σj)σj

=
1

2

∑
j

Tr(Oσj)σj (9)

Now let’s look again at the expectation value of an operator〈
O
〉

=
∑
i

pi 〈ψi|O|ψi〉

=
∑
i

pi

〈
ψi

∣∣∣∣12 ∑
j

Tr(Oσj)σj
∣∣∣∣ψi

〉

=
∑
j

1

2
Tr(Oσj)︸ ︷︷ ︸

aj

∑
i

pi 〈ψi|σj|ψi〉︸ ︷︷ ︸
Pj

=
∑
j

ajPj (10)
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where aj is the analyzing power2 and Pj is the polarization.3 Note that,
because of the definition, P0 = 1 always.

Extreme Cases for Polarization

1: All particles are in the same state |ψi〉
In this case, the total polarization, |~P | will be 1, which indicates the en-
semble of particles is ”pure”. The polarization vector will point in the same
direction that is given by the state vector for all particles.

2: All particles are in totally random states
In this case, ~P will be 0, meaning there is no preferred state vector for the
ensemble as a whole. One interesting point to be made about this case is
that an ensemble of totally randomly oriented state vectors is indistinguish-
able from an ensemble of exactly half spin-up and half spin-down particles:
both have ~P = 0, but as stated before, the result of any measurement is
completely determined by ~P .

To make a connection between the polarization and the density matrix,
recall that we can express any operator as a sum of the Pauli matrix vectors
(including the density matrix). So,

ρ =
1

2

∑
j

Tr(ρσj)σj (11)

But what is Tr(ρσj)? Well, let’s express the trace as a sum:

Tr(ρσj) =
∑
k

〈
k

∣∣∣∣∑
i

pi

∣∣∣∣ψi

〉
〈ψi|σj|k〉

=
∑
i

pi 〈ψi|σj|ψi〉

= Pj (12)

So it turns out that Tr(ρσj) is simply the jth component off the polarization,
which leads to

ρ =
1

2

∑
j

Pjσj (13)

2The analyzing power only contains information about the operator, not the system.
3The polarization contains information about the distribution of particle states in the

system.
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The density matrix is the only thing you need to know to have all knowl-
edge of a system IF all the particles have no knowledge of each other. This
is a much deeper statement than simply saying the particles don’t interact,
as we will see.
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