
Time Independent Perturbation Theory Contd.

Intrinsic Perturbations of the H atom

The eigenstates to the unperturbed hydrogen atom hamiltonian can be written as
|nlmlm

(e)
s m

(p)
s > with n ≥ 1, 0 ≤ l ≤ n − 1, −l ≤ ml ≤ l, m

(e)
s = ±1/2 and

m
(p)
s = ±1/2. These quantum numbers completely specify the state of the Hydrogen

atom. Often, the proton spin and even the electron spin are suppressed when writing
down these states, but they are of course always there implicitly. Ignoring the spin
of the proton for now, we can label the eigenstates with

|nlmlm
(e)
s >

In the following, we will discuss two additions to the hydrogen atom Hamiltonian:

Relativistic corrections

The kinetic energy Tk 6= P 2

2m
, instead

Tk =
√
m2c4 + p2c2 −mc2

= mc2

(√
1 +

P 2

m2c2
− 1

)
= mc2(1 +

P 2

2m2c2
− 1

8

P 4

m4c4
. . .− 1)

≈ P 2

2m
− P 4

8m3c2︸ ︷︷ ︸
Hp

This part of Hp is very small at normal velocities (it is suppressed versus the leading
term in the kinetic energy by a factor 1

4
v2/c2).

LS Coupling

The electron has a magnetic moment µ = γS that interacts with the external
magnetic field the electron “sees” in its own rest frame where the proton is moving
(and, as any moving charge, will produce a magnetic field). This gives a second
term due to interaction the angular momentum and spin of the electron as:

Hp =
e2

2m2c2r3
Se · Le
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The scalar product can be expressed as

Se · Le =
(S + L)2 − L2 − S2

2
=

J2 − L2 − S2

2

If we rewrite the eigenstates in terms of eigenstates to J2,L2,S2, we can “au-
tomatically” diagonalize the perturbing Hamiltonian (and evaluate its matrix ele-
ments).

Total angular momentum:

J2 = (L + S)2

For the electron s = 1
2
; S2 has eigenvalue 3

4
h̄2.

We rewrite the state in terms of eigenfunctions to J2 as

|nljmj > with

{
l orbital angular momentum quantum number

j,mj eigenstate to J2, Jz

Rules for angular momentum addition:

j =

{
l + 1

2

l − 1
2

if l ≥ 1

So that

|n, l, j,mj >=
∑
ml,ms

< l,ml,
1

2
ms|j,mj > |n, l,ml,m

(e)
s >

The sum goes over all possible states that can contribute (only the ones for
which the C.G.C are not zero, i.e. mj = ml +ms).

Relativistic corrections to the hydrogen atom energies

The two relativistic additions to the Hydrogen wave function are a correction of the
kinetic energy expression and spin orbit interaction.

Hp = −1

8

p4

m3c2
+

e2

4m2c2r3
(J2 − L2 − L2)

with Le.Se = J2−L2−L2

2
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Kinetic Part

The correction to the kinetic energy can be rewritten as

−1

8

P 4

m3c2
= − 1

2mc2
(
P 2

2m
)2

= − 1

2mc2
(Ho +

e2

r
)2 = − 1

2mc2

(
H2
o +

Hoe
2

r
+
e2Ho

r
+
e4

r2

)
This part of the perturbing Hamiltonian acts only on the radial part of the wave

function (it is rotationally symmetric) and therefore only depends on the quantum

numbers n, l. Therefore, we can pick either |nlmlm
(e)
s > or |n, l, j,mj > as our basis

states. Out of laziness, we list them as |n, l,m > below. Furthermore, for the same
reason, this part of Hp is already diagonal in l and therefore we do not need to
change the basis of eigenfunctions of the unperturbed hydrogen atom Hamiltonian.

Now,

Ho|nlm >= −Ry(
1

n2
)|nlm >

To calculate the change in energy to 1st order, we have to evaluate the following
matrix elements:

< nlm|(H2
o +

Hoe
2

r
+
e2Ho

r
)|nlm >=

Ry2

n4
− 2Ry

n2
< nlm|(e

2

r
)|nlm >

and

< nlm|(e
4

r2
)|nlm > .

Taking

< nlm|(e
2

r
)|nlm >=

2Ry

n2

(the expectation value for the potential energy is twice that for the total energy) we
get for the total correction

= − 1

2mc2

[
−3Ry2

n4
+ < nlm|(e

4

r2
)|nlm >

]
Now we evaluate the last part, using a somewhat tricky ”detour”:

The Hamiltonian is written as

Ho = − h̄2

2mr2

∂

∂r
r2 ∂

∂r
+
h̄2l(l + 1)

2mr2
+ V (r)
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The solutions can be expressed in terms of the quantum numbers k, l,m with n =
k+ l+ 1 - they are (associated Laguerre) polynomials of degree k multiplied with rl

and the angular momentum eigenstates Ylm, with eigenvalues Ekl = −Ry/(k+l+1)2.
Now let’s pretend that we can treat l like a continuous variable and ask the question
“what happens if we increase l by a tiny amount λ?” First of all, the energy will
change by an amount

δEkl =
∂Ekl
∂l

λ = −2
−Ry

(k + l + 1)3
λ = 2

Ry

n3
λ. (1)

We can think of this change as being due to a change in the Hamiltonian itself,

H0 → H0 + δH = H0 +
∂H0

∂l
λ = H0 + h̄2 2l + 1

2mr2
λ (2)

Using our knowledge about perturbation theory, we can therefore conclude that
the change in energy, δEkl, is the first order correction due to the “perturbing
Hamiltonian” δH0:

δEkl = 2
Ry

n3
λ =< nlm|(δH0)|nlm >= h̄2 2l + 1

2m
λ < nlm| 1

r2
|nlm > (3)

Therefore, we conclude that

< nlm|(e
4

r2
)|nlm >= 2

Ry

n3

2me4

h̄2(2l + 1)
=

4Ry2

n3(l + 1
2
)

(4)

(note Ry = me4/2h̄2).

We end up with

< nlm|Hp|nlm >=
Ry2

2mc2
(

3

n4
− 4

n3(l + 1
2
)
)

Fine Structure Part

Since the previous result does not depend on our choice for the basis states (as long
as they are eigenfunctions to L2), we can evaluate the second part of HP by choosing
the eigenstates |n, l, j,mj > which diagonalize the LS term and thus the complete
perturbing Hamiltonian.
Let |a >= |n, l, j,mj >

S2|a >= h̄2s(s+ 1) =
3h̄2

4
|a >
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L2|a >= h̄2l(l + 1)

J2|a >= h̄2j(j + 1)|a >; j = (l ± 1

2
)

For the case l + 1
2

J2 = h̄2(l +
1

2
)(l +

3

2
) = h̄2(l2 + 2l +

3

4
)

For the case l − 1
2

J2 = h̄2(l − 1

2
)(l +

1

2
) = h̄2(l2 − 1

4
)

And we have

2LS|a >= h̄2l|a > (for j = l +
1

2
)

2LS|a >= h̄2(−l − 1)|a > (for j = l − 1

2
)

To find the 1st order change in energy, we only have to calculate

< n, l, j,mj|Hp|n, l, j,mj >

The only thing that remains to figure out is the 1
r3

term and only n and l affect
the matrix element of this term. I am running out of steam and simply quote the
result (see Shankar’s exercise 17.3.4 if you want to derive this yourself):

< n, l, j,mj|HLS
p |n, l, j,mj >=

e2

2m2c2

1

a3
on

3l(l + 1
2
)(l + 1)

× h̄
2

2

{
l if j = l + 1

2

−(l + 1) if j = l + 1
2

< n, l, j,mj|HLS
p |n, l, j,mj >=

{
e2

4m2c2
h̄2

a3on
3(l+ 1

2
)(l+1)

if j = l + 1
2

− e2

4m2c2
h̄2

a3on
3l(l+ 1

2
)

if j = l − 1
2

For example, if l = 1, we get six degenerate eigenstates of H0 for every value of
n. After “turning on” the perturbation due to L · S coupling, we get 4 states with
j = 1+1/2 which are raised in energy and 2 states with j = −1/2 which are lowered
in energy by double that amount (so that the average energy is still the same as the
unperturbed one).
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Knowing that

ao = h̄2/me2; Ry =
me4

2h̄2 =
mc2α2

2
; α =

e2

h̄c

and replacing these into the constants for Hp we have

e2

4m2c2

h̄2

a3
on

3
=
mc2α4

4n4
n

for the LS term and

Ry2

2mc2
(

3

n4
− 4

n3(l + 1
2
)
) =

mc2α4

8n4
(3− 4n

l + 1
2

)

for the kinetic term.

Adding the 2 parts of the perturbing Hamiltonian we get

mc2α4

8n4
× (3 + 2n

1− 2(l + 1)

(l + 1
2
)(l + 1)

) =
mc2α4

8n4

(
3− 4n

j + 1
2

)
for j = l +

1

2

This turns out to be the same as

mc2α4

8n4
× (3 + 2n

−1− 2(l)

l(l + 1
2
)

) =
mc2α4

8n4
×
(

3− 4n

j + 1
2

)
for j = l − 1

2

The total energy change due to both effects is thus

mc2α4

8n4

(
3− 4n

j + 1
2

)
meaning it is still degenerate in l but depends on j.

We can see that the fractional change in energy is equal to

En ×
α2

n2

(
3

4
− n

j + 1
2

)
which is suppressed by the (small) factor α2

n2 , which justifies that even to first order
the perturbative approximation must be quite good.
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