Quantum Mechanics Lectures

1 Time Independent Perturbation Theory

We start with the Hamiltonian $H=H_{0}+H_{p}$ where we assume that we know the solution of the Schrödinger equation for the unperturbed Hamiltonian H_{0}

$$
H_{0}|n\rangle=E_{n}|n\rangle
$$

We assume that the perturbed Hamiltonian H_{p} is a relatively small change to H_{0}. We do not know the solution for the Schrödinger equation $H \psi=E \psi$. Assume for every wave function $|n\rangle$ there is a corresponding wave function ψ_{n}^{\prime} which is a solution for the Hamiltonian H such that

$$
H\left|\psi_{n}^{\prime}\right\rangle=E_{n}^{\prime}\left|\psi_{n}^{\prime}\right\rangle
$$

Assume all E_{n} are non degenerate (e.g., bound states in one dimension), we can write

$$
\left|\psi_{n}^{\prime}\right\rangle=|n\rangle+\left|\delta \psi_{\perp}\right\rangle
$$

\perp is used to indicate that the $\left|\delta \psi_{\perp}\right\rangle$ is supposed to be orthogonal to the unperturbed wave function $|n\rangle$,i.e. $\left\langle n \mid \delta \psi_{\perp}\right\rangle=0$. Otherwise, we can write

$$
\begin{gathered}
\left|\psi_{n}^{\prime}\right\rangle=|n\rangle+\left|\delta \psi_{\perp}\right\rangle+\left|\delta \psi_{\|}\right\rangle=|n\rangle+(|\delta \psi\rangle-\langle n \mid \delta \psi\rangle|n\rangle)+\langle n \mid \delta \psi\rangle|n\rangle \\
\left|\psi_{n}^{\prime}\right\rangle=(1+\langle n \mid \delta \psi\rangle)|n\rangle+\left|\delta \psi_{\perp}\right\rangle
\end{gathered}
$$

Let $\zeta=1+\langle n \mid \delta \psi\rangle$, therefore

$$
\frac{1}{\zeta}\left|\psi_{n}^{\prime}\right\rangle=|n\rangle+\frac{1}{\zeta}\left|\delta \psi_{\perp}\right\rangle
$$

So always we can choose $\left|\delta \psi_{\|}\right\rangle=0$.
The Schrödinger equation for the perturbed Hamiltonian is given by $H\left|\psi_{n}^{\prime}\right\rangle=$ $E_{n}^{\prime}\left|\psi_{n}^{\prime}\right\rangle$, the right hand side can be written as $E_{n}^{\prime}|n\rangle+E_{n}^{\prime}\left|\delta \psi_{\perp}\right\rangle$. The left hand side consists of four terms

$$
\begin{equation*}
\left(H_{0}+H_{p}\right)\left|\psi_{n}^{\prime}\right\rangle=H_{0}|n\rangle+H_{0}\left|\delta \psi_{\perp}\right\rangle+H_{p}|n\rangle+H_{p}\left|\delta \psi_{\perp}\right\rangle \tag{1}
\end{equation*}
$$

Multiply both sides by $\langle n|$, one gets

$$
\langle n| H\left|\psi_{n}^{\prime}\right\rangle=\langle n| E_{n}^{\prime}\left|\psi_{n}^{\prime}\right\rangle=\langle n| E_{n}^{\prime}|n\rangle+\langle n| E_{n}^{\prime}\left|\delta \psi_{\perp}\right\rangle=E_{n}^{\prime}
$$

$$
\begin{gather*}
\langle n|\left(H_{0}+H_{p}\right)\left|\psi_{n}^{\prime}\right\rangle=\langle n| H_{0}|n\rangle+\langle n| H_{0}\left|\delta \psi_{\perp}\right\rangle+\langle n| H_{p}|n\rangle+\langle n| H_{p}\left|\delta \psi_{\perp}\right\rangle \\
E_{n}^{\prime}=E_{n}+\langle n| H_{p}|n\rangle+\langle n| H_{p}\left|\delta \psi_{\perp}\right\rangle \tag{2}
\end{gather*}
$$

Now, multiplying (1) by $\langle m|$, where $m \neq n$, we get

$$
\begin{equation*}
E_{n}^{\prime}\left\langle m \mid \delta \psi_{\perp}\right\rangle=\langle m| H_{0}\left|\delta \psi_{\perp}\right\rangle+\langle m| H_{p}|n\rangle+\langle m| H_{p}\left|\delta \psi_{\perp}\right\rangle=\langle m| H_{p}|n\rangle+\langle m| H_{p}\left|\delta \psi_{\perp}\right\rangle \tag{3}
\end{equation*}
$$

Equations 2 and 3 have no approximation applied to them yet. Using the assumptions H_{p} and $\delta \psi_{\perp}$ are small, so we can ignore the last term in RHS of equations 2 and 3 at first order. Therefore for the first order approximation I do not need to know the perturbed wave function $\left|\delta \psi_{\perp}\right\rangle$. From 2,

$$
\begin{equation*}
E_{n}^{\prime}=\langle n| H|n\rangle=E_{n}+\langle n| H_{P}|n\rangle \tag{4}
\end{equation*}
$$

From 3,

$$
\begin{gathered}
E_{n}^{\prime}\left\langle m \mid \delta \psi_{\perp}\right\rangle=E_{m}\left\langle m \mid \delta \psi_{\perp}\right\rangle+\langle m| H_{p}|n\rangle \\
\left(E_{n}^{\prime}-E_{m}\right)\left\langle m \mid \delta \psi_{\perp}\right\rangle=\langle m| H_{p}|n\rangle
\end{gathered}
$$

To the first order approximation $E_{n}^{\prime}=E_{n}$, so we get

$$
\begin{gathered}
\left(E_{n}-E_{m}\right)\left\langle m \mid \delta \psi_{\perp}\right\rangle=\langle m| H_{p}|n\rangle \\
\left\langle m \mid \delta \psi_{\perp}\right\rangle=\frac{\langle m| H_{p}|n\rangle}{E_{n}-E_{m}}
\end{gathered}
$$

we can write the perturbed wave function to the first order approximation as follows

$$
\begin{equation*}
\left|\delta \psi_{\perp}\right\rangle=\sum_{n \neq m} \frac{\langle m| H_{p}|n\rangle}{E_{n}-E_{m}}|m\rangle \tag{5}
\end{equation*}
$$

It's orthogonal to $|n\rangle$. It tells us that the change we have to apply to $|n\rangle$ is dominated by those states $|m\rangle$ for which the overlap (numerator) is large and the denominator (energy difference) is small. For the perturbation expansion to work, we require $\left\langle\delta \psi_{\perp} \mid \delta \psi_{\perp}\right\rangle$ to be much less than one. The overlap between any two wave functions introduced by the Hamiltonian should be small. For the second order approximation for the new energy eigenvalue, we get

$$
\begin{equation*}
E_{n}^{\prime}=E_{n}+\langle n| H_{p}|n\rangle+\langle n| H_{p}\left|\sum_{n \neq m} m\right\rangle \frac{\langle m| H_{p}|n\rangle}{E_{n}-E_{m}}=E_{n}+\langle n| H_{p}|n\rangle+\sum_{n \neq m} \frac{\left.\left|\langle m| H_{p}\right| n\right\rangle\left.\right|^{2}}{E_{n}-E_{m}} \tag{6}
\end{equation*}
$$

1.1 Example 1: Harmonic Oscillator

The unperturbed Hamiltonian can be written as $H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$
The perturbed Hamiltonian is given by $H_{p}=d \cdot x$. The exact solution is

$$
\begin{aligned}
\psi_{n}^{\prime}(x) & =\phi_{n}\left(x+\frac{d}{m \omega^{2}}\right) \\
E_{n}^{\prime} & =E_{n}-\frac{d^{2}}{2 m \omega^{2}}
\end{aligned}
$$

To the first order approximation $E_{n}^{\prime}=E_{n}$ because d is very small and therefor d^{2} can be neglected. Indeed, $\left\langle\phi_{n}\right| H_{p}\left|\phi_{n}\right\rangle=d\left\langle\phi_{n}\right| x\left|\phi_{n}\right\rangle=0$ for all ϕ_{n}.

The wave function to the first order approximation is

$$
\left|\delta \psi_{\perp}\right\rangle=\sum_{n \neq m} \frac{\left\langle\phi_{m}\right| d x\left|\phi_{n}\right\rangle}{(n-m) \hbar \omega}\left|\phi_{m}\right\rangle
$$

In the first semester we already showed that

$$
\begin{gather*}
\left\langle\phi_{n+1}\right| \hat{X}\left|\phi_{n}\right\rangle=\sqrt{\frac{n+1}{2}} \tag{7}\\
\hat{X}=\frac{x}{\sqrt{\frac{\hbar}{m \omega}}} \\
\left\langle\phi_{n-1}\right| \hat{X}\left|\phi_{n}\right\rangle=\sqrt{\frac{n}{2}} \tag{8}
\end{gather*}
$$

Equations (7) and (8) are the only non-zero matrix elements.Using the raising and lowering operators we can get the same results;

$$
\begin{gathered}
a=\frac{1}{\sqrt{2}}(\hat{X}+i \hat{P}) \\
\hat{X}=\frac{1}{\sqrt{2}}\left(a+a^{\dagger}\right) \\
a^{\dagger}\left|\phi_{n}\right\rangle=\sqrt{n+1}\left|\phi_{n+1}\right\rangle \\
a\left|\phi_{n}\right\rangle=\sqrt{n}\left|\phi_{n-1}\right\rangle
\end{gathered}
$$

Therefore the sum has only two values of nonzero contribution $x=\sqrt{\frac{\hbar}{m \omega}} \hat{X}$. The wave function in the first order approximation when $n>0$ is given by

$$
\left|\delta \psi_{\perp}\right\rangle=d \sqrt{\frac{\hbar}{m \omega}}\left(\frac{\sqrt{\frac{n+1}{2}}}{-\hbar \omega}\left|\phi_{n+1}\right\rangle+\frac{\sqrt{\frac{n}{2}}}{\hbar \omega}\left|\phi_{n-1}\right\rangle\right),
$$

which means the wave function changes in the first order. Let $n=0$:

$$
\begin{gathered}
\left|\delta \psi_{\perp}\right\rangle=-d \sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{\hbar \omega}\left|\phi_{1}\right\rangle=-d \sqrt{\frac{1}{2 m \hbar \omega^{3}}}\left|\phi_{1}\right\rangle \\
\left|\phi_{1}\right\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \sqrt{\frac{1}{2^{1} \cdot 1!}}\left(2 \sqrt{\frac{m \omega}{\hbar}} x\right) \exp \left(\frac{-m \omega x^{2}}{2 \hbar}\right) \Rightarrow \\
\left|\delta \psi_{\perp}\right\rangle=-d \sqrt{\frac{1}{2 m \hbar \omega^{3}}} \sqrt{\frac{2 m \omega}{\hbar} x\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \exp \left(\frac{-m \omega x^{2}}{2 \hbar}\right)} \\
\left|\delta \psi_{\perp}\right\rangle=-d \sqrt{\frac{1}{\hbar^{2} \omega^{2}}} x\left|\phi_{0}(x)\right\rangle
\end{gathered}
$$

which is the same answer that we get for the exact solution ψ_{0}^{\prime} if we Taylor-expand it to first order in d :

$$
\begin{gathered}
\psi_{0}^{\prime}=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \exp \left(\frac{-m \omega\left(x+\frac{d}{m \omega^{2}}\right)^{2}}{2 \hbar}\right)=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \exp \left(\frac{-m \omega x^{2}}{2 \hbar}-\frac{x d}{\omega \hbar}-\ldots\right) \Rightarrow \\
\psi_{0}^{\prime}=\phi_{0}(x)\left(1-\frac{d x}{\hbar \omega}\right) .
\end{gathered}
$$

Now we need to evaluate the second order for E_{n}^{\prime} :

$$
\begin{gathered}
E_{n}^{\prime}=E_{n}+\sum_{n \neq m} \frac{\left.\left|\left\langle\phi_{m}\right| d x\right| \phi_{n}\right\rangle\left.\right|^{2}}{E_{n}-E_{m}}=E_{n}+\frac{d^{2} \hbar}{m \omega}\left(\frac{n+1}{-2 \hbar \omega}+\frac{n}{2 \hbar \omega}\right) \\
E_{n}^{\prime}=E_{n}-\frac{d^{2} \hbar}{m \omega}\left(\frac{1}{2 \hbar \omega}\right)=E_{n}-\frac{d^{2}}{2 m \omega^{2}}
\end{gathered}
$$

Which is the exact solution. Therefore the energy comes out right after only the second order approximation.

