
Quantum Mechanics Lectures

1 Time Independent Perturbation Theory

We start with the Hamiltonian H = H0 + Hp where we assume that we know the
solution of the Schrödinger equation for the unperturbed Hamiltonian H0

H0|n〉 = En|n〉

We assume that the perturbed Hamiltonian Hp is a relatively small change to
H0. We do not know the solution for the Schrödinger equation Hψ = Eψ. Assume
for every wave function |n〉 there is a corresponding wave function ψ′n which is a
solution for the Hamiltonian H such that

H|ψ′n〉 = E ′n|ψ′n〉

Assume all En are non degenerate (e.g., bound states in one dimension), we can
write

|ψ′n〉 = |n〉+ |δψ⊥〉
⊥ is used to indicate that the |δψ⊥〉 is supposed to be orthogonal to the unperturbed
wave function |n〉,i.e. 〈n|δψ⊥〉 = 0. Otherwise, we can write

|ψ′n〉 = |n〉+ |δψ⊥〉+ |δψ||〉 = |n〉+ (|δψ〉 − 〈n|δψ〉|n〉) + 〈n|δψ〉|n〉

|ψ′n〉 = (1 + 〈n|δψ〉)|n〉+ |δψ⊥〉
Let ζ = 1 + 〈n|δψ〉, therefore

1

ζ
|ψ′n〉 = |n〉+

1

ζ
|δψ⊥〉

So always we can choose |δψ||〉 = 0.
The Schrödinger equation for the perturbed Hamiltonian is given by H|ψ′n〉 =
E ′n|ψ′n〉, the right hand side can be written as E ′n|n〉 + E ′n|δψ⊥〉. The left hand
side consists of four terms

(H0 +Hp)|ψ′n〉 = H0|n〉+H0|δψ⊥〉+Hp|n〉+Hp|δψ⊥〉 (1)

Multiply both sides by 〈n|, one gets

〈n|H|ψ′n〉 = 〈n|E ′n|ψ′n〉 = 〈n|E ′n|n〉+ 〈n|E ′n|δψ⊥〉 = E ′n
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〈n|(H0 +Hp)|ψ′n〉 = 〈n|H0|n〉+ 〈n|H0|δψ⊥〉+ 〈n|Hp|n〉+ 〈n|Hp|δψ⊥〉

E ′n = En + 〈n|Hp|n〉+ 〈n|Hp|δψ⊥〉 (2)

Now, multiplying (1) by 〈m|, where m 6= n, we get

E ′n〈m|δψ⊥〉 = 〈m|H0|δψ⊥〉+〈m|Hp|n〉+〈m|Hp|δψ⊥〉 = 〈m|Hp|n〉+〈m|Hp|δψ⊥〉 (3)

Equations 2 and 3 have no approximation applied to them yet. Using the as-
sumptions Hp and δψ⊥ are small, so we can ignore the last term in RHS of equations
2 and 3 at first order. Therefore for the first order approximation I do not need to
know the perturbed wave function |δψ⊥〉. From 2,

E ′n = 〈n|H|n〉 = En + 〈n|HP |n〉. (4)

From 3,
E ′n〈m|δψ⊥〉 = Em〈m|δψ⊥〉+ 〈m|Hp|n〉

(E ′n − Em)〈m|δψ⊥〉 = 〈m|Hp|n〉

To the first order approximation E ′n = En, so we get

(En − Em)〈m|δψ⊥〉 = 〈m|Hp|n〉

〈m|δψ⊥〉 =
〈m|Hp|n〉
En − Em

we can write the perturbed wave function to the first order approximation as follows

|δψ⊥〉 =
∑
n6=m

〈m|Hp|n〉
En − Em

|m〉 (5)

It’s orthogonal to |n〉. It tells us that the change we have to apply to |n〉 is dominated
by those states |m〉 for which the overlap (numerator) is large and the denominator
(energy difference) is small. For the perturbation expansion to work, we require
〈δψ⊥|δψ⊥〉 to be much less than one. The overlap between any two wave functions
introduced by the Hamiltonian should be small. For the second order approximation
for the new energy eigenvalue, we get

E ′n = En + 〈n|Hp|n〉+ 〈n|Hp|
∑
n6=m

m〉〈m|Hp|n〉
En − Em

= En + 〈n|Hp|n〉+
∑
n 6=m

|〈m|Hp|n〉|2

En − Em

(6)
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1.1 Example 1: Harmonic Oscillator

The unperturbed Hamiltonian can be written as H0 = p2

2m
+ 1

2
mω2x2

The perturbed Hamiltonian is given by Hp = d · x. The exact solution is

ψ′n(x) = φn(x+
d

mω2
)

E ′n = En −
d2

2mω2

To the first order approximation E ′n = En because d is very small and therefor d2

can be neglected. Indeed, 〈φn|Hp|φn〉 = d〈φn|x|φn〉 = 0 for all φn.

The wave function to the first order approximation is

|δψ⊥〉 =
∑
n6=m

〈φm|dx|φn〉
(n−m)h̄ω

|φm〉

In the first semester we already showed that

〈φn+1|X̂|φn〉 =

√
n+ 1

2
(7)

X̂ =
x√
h̄

mω

〈φn−1|X̂|φn〉 =

√
n

2
(8)

Equations (7) and (8) are the only non-zero matrix elements.Using the raising and
lowering operators we can get the same results;

a =
1√
2

(X̂ + iP̂ )

X̂ =
1√
2

(a+ a†)

a†|φn〉 =
√
n+ 1|φn+1〉

a|φn〉 =
√
n|φn−1〉
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Therefore the sum has only two values of nonzero contribution x =
√

h̄
mω
X̂.

The wave function in the first order approximation when n > 0 is given by

|δψ⊥〉 = d

√
h̄

mω
(

√
n+1

2

−h̄ω
|φn+1〉+

√
n
2

h̄ω
|φn−1〉),

which means the wave function changes in the first order. Let n = 0:

|δψ⊥〉 = −d
√

h̄

2mω

1

h̄ω
|φ1〉 = −d

√
1

2mh̄ω3
|φ1〉

|φ1〉 =
(mω
πh̄

) 1
4

√
1

21 · 1!

(
2

√
mω

h̄
x

)
exp(
−mωx2

2h̄
)⇒

|δψ⊥〉 = −d
√

1

2mh̄ω3

√
2mω

h̄
x
(mω
πh̄

) 1
4

exp(
−mωx2

2h̄
)

|δψ⊥〉 = −d
√

1

h̄2ω2
x|φ0(x)〉

which is the same answer that we get for the exact solution ψ′0 if we Taylor-expand
it to first order in d:

ψ′0 = (
mω

πh̄
)
1
4 exp(

−mω(x+ d
mω2 )2

2h̄
) = (

mω

πh̄
)
1
4 exp(

−mωx2

2h̄
− xd

ωh̄
− ...)⇒

ψ′0 = φ0(x)(1− dx

h̄ω
).

Now we need to evaluate the second order for E ′n:

E ′n = En +
∑
n6=m

|〈φm|dx|φn〉|2

En − Em

= En +
d2h̄

mω
(
n+ 1

−2h̄ω
+

n

2h̄ω
)

E ′n = En −
d2h̄

mω
(

1

2h̄ω
) = En −

d2

2mω2

Which is the exact solution. Therefore the energy comes out right after only the
second order approximation.
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