Quantum Mechanics Lectures

1 Time Independent Perturbation Theory

We start with the Hamiltonian H = H, + H, where we assume that we know the
solution of the Schrédinger equation for the unperturbed Hamiltonian H

Holn) = En[n)

We assume that the perturbed Hamiltonian H), is a relatively small change to
Hy. We do not know the solution for the Schrodinger equation Hvy = E1). Assume
for every wave function |n) there is a corresponding wave function ¢/, which is a
solution for the Hamiltonian H such that

HIy,) = B lin,)

Assume all E, are non degenerate (e.g., bound states in one dimension), we can
write

[¥5) = In) + [dp1)
1 is used to indicate that the |§7), ) is supposed to be orthogonal to the unperturbed
wave function |n),i.e. (n|dy) = 0. Otherwise, we can write

[¥n) = In) +10¢1) + 16¢y) = [n) + (|0¢) — (n|ov)[n)) + (n|6y)|n)
[¥n) = (14 (n]dy))|n) + [0¢1)
Let ( = 1+ (n|dv), therefore
Loy L
¢l¥n) = Im) + Z10%u)

So always we can choose |d1))) = 0.

The Schrédinger equation for the perturbed Hamiltonian is given by H|¢)) =
E!|[Y!), the right hand side can be written as E!|n) + E!|d,). The left hand
side consists of four terms

(Ho + H,)[¥y,) = Holn) + Holdy1) + Hy|n) + Hyldth,) (1)
Multiply both sides by (n|, one gets

(nH[ypr) = (nlE,|v5) = (n|Eyn) + (n Ep|6v.) = B,
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(n|(Ho + Hy)[¢y) = (n|Ho|n) + (n|Hol6v 1) + (n|Hpyln) + (n|Hpl6¢1)
E, = En+ (n|Hy|n) + (n|Hy|6¢1) (2)
Now, multiplying (1) by (m|, where m # n, we get

B (m|ov1) = (m|Hol0p L)+ (m| Hy|n)+(m|Hp|0v 1) = (m|Hp|n)+(m|Hy|dv1) (3)

Equations 2 and 3 have no approximation applied to them yet. Using the as-
sumptions H, and 41, are small, so we can ignore the last term in RHS of equations
2 and 3 at first order. Therefore for the first order approximation I do not need to
know the perturbed wave function |07, ). From 2,

E;, = (n|H|n) = En + (n|Hp|n). (4)

From 3,
Ey(m|ovy) = En(m|ovL) + (m[Hy|n)
(Ey, — En)(m|0y1) = (m|Hy|n)

To the first order approximation £, = F,, so we get
(En = Em)(m|6¢1) = (m|Hp|n)

(mlgp) = {72

we can write the perturbed wave function to the first order approximation as follows

ouyy = 3 Al (5)

En - Em
n#m

It’s orthogonal to |n). It tells us that the change we have to apply to |n) is dominated
by those states |m) for which the overlap (numerator) is large and the denominator
(energy difference) is small. For the perturbation expansion to work, we require
(011 1611 ) to be much less than one. The overlap between any two wave functions
introduced by the Hamiltonian should be small. For the second order approximation

for the new energy eigenvalue, we get
mIH In |(m| Hy|n)|®

E) = E, + (n|Hp|n) + (n|H,| Z = E, + (n|Hyn) + Z —
n#m

n#m

B, — By,
(6)



1.1 Example 1: Harmonic Oscillator

The unperturbed Hamiltonian can be written as Hy = % + tmw?z?
The perturbed Hamiltonian is given by H, = d - . The exact solution is

U (@) = bulr + )

d2

E =E, -
" 2muw?

To the first order approximation E/ = E, because d is very small and therefor d?
can be neglected. Indeed, (¢, |Hp|¢n) = d(¢n|z|pn) = 0 for all ¢,.

The wave function to the first order approximation is

pu) = Y )

n#m

In the first semester we already showed that

n+1

(Bl Xlon) = /= (")
T x
B
(@n1lX16a) = /5 ®)

Equations (7) and (8) are the only non-zero matrix elements.Using the raising and
lowering operators we can get the same results;

(X +iP)

a =

Sl -
—_ [\

X =—(a+ad)

V2
a'|¢n) = Vn +1|bp41)
a|¢n> = \/ﬁ|¢n—1>



~

h

Therefore the sum has only two values of nonzero contribution z = /-
The wave function in the first order approximation when n > 0 is given by

66y = d iNg

mw

’¢n+1> + £|¢n 1>)

which means the wave function changes in the first order. Let n = 0:

0)1) = —d\/ ‘<Z51 2mhw3|¢1>
mw\ i 1 mw —muwax?
1) = <7rh> 2. 1! (2 \ Tx) ()=
1 2mw mw\ i —mwa?
001 = _d\/2mhw3\/ n " ( wh) xpl—5;—)

501) = —dy | el (@)

which is the same answer that we get for the exact solution vy, if we Taylor-expand

it to first order in d:

p o mwn o mmw(r )T mw _ oz

;o dz
Yo = ¢o(z)(1 — %)

Now we need to evaluate the second order for E:

\¢mld1’|¢n B d*h ,n+1 n
= b +Z _En+mw(—2hw+2hw)

n#m

d*h 1 d?
E =F, — —)=FE, —

" mw(2hw) 2mw?
Which is the exact solution. Therefore the energy comes out right after only the

second order approximation.




