
Lecture 11 - the WKB method

Any wave function in coordinate space (1-dim) can be written as

ψ(x) = A(x)eiS(x)/~.

When plugged into Schrödinger equation, we found the two following relations
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Let’s go one step forward. Can we use this way of writing the wavefunction to
find stationary solutions ψE?

ψE(x, t) = A(x)eiS(x)/~e−iEt/~

In general, the amplitude depends on time: A(x, t), but for stationary states:
A(x). In solving eq. (2), assume
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then eq.(2) gives just
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When taking the approximation above, when is the inequality true?
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this means that the amplitude of the wavefunction should not change much over
a wavelength. The phase is given by

S(x) =

∫ x
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p(x′)dx′.

From eq. (1),
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and finally, taking the exponential in both sides and absorbing all constants into
C,
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recall also that eq. (1) reproduces the continuity equation:
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For stationary states, the first term vanishes and thus ∇ · ~J = 0. Recall also
that we wrote
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which should be a constant, since it can not depend on x. The density ρ = A2

is largest where the momentum is small,
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p
.

A pretty good approximation to a stationary solution is then
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unless the approximation (3) doesn’t hold. Note also that there are actually
two solutions ψ+

E and ψ−E , with normalization constant C+,−C−.

Particle in a box
For a 1-dim box located at the interval [0...a], we must have C+ = −C− and
the stationary solution is
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but it is also required that ψ(x = a) = 0, thus it is required∫ x

x0

p(x′)dx′ = nπ~,

which is equivalent to Bohr-Sommerfeld quantization condition:
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Note that the factor 2 comes about because for a ”closed path” as required in
the Bohr-Sommerfeld condition we have to go from 0 to a and back to 0.

Constant potential V
If a particle follows a closed path where V (~r) is constant, then the closed loop
integral around a path of length L simply becomes p ·L = 2nπ~. This condition
can help us understand why only certain orbits are allowed. For a classical path
around the Hydrogen atom, circular orbit of radius R:
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For a Hydrogen atom, the binding energy E
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which corresponds to what we already know. However, for non-circular orbits,
this procedure can get really messy.

Potential barrierl V > E
If V (x) > E, p(x) is imaginary and the solution is then
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The wavefunction must be exponentially falling, otherwise is not normalizable.
Consider a short range nucleus potential. Classically, the particle cannot

escape. The probability of finding it at x� a is

P (x� a) ∼ P (x < a) · e−2
∫ x
a
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the exponent factor in the exponential is known as the barrier (to get through).
For example, an α-particle (He4) inside a big fat Uranium (U) atom: it will
bounce between the potential like a pinball, and eventually (∼ billion years),
the α particle will get through the potential barrier, i.e. the U atom emits an
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α-particle.

Smooth Potential
If the potential has a smooth but non-trivial dependence on x where for some xe
it becomes equal to E , we can always restrict the solution to the Schrödinger
equation to a short interval around xe, where a linear approximation for the
potential is helpful

V (x) = V (x0) + V ′(x0)(x− x0),

then it is possible to solve the Schrödinger equation in this region with the
approximated potential

− ~2

2m

∂2ψ

∂x2
+ V ′(x− x0)ψ = 0.

and use the WKB method elsewhere (with the usual imaginary exponent where
V < E and the negative, real exponent where V > E) to smoothly connect on
both sides.

Typically, this leads to a modification of the quantization condition,∫ a
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