Lecture 11 - the WKB method

Any wave function in coordinate space (1-dim) can be written as
Y(x) = Az)eS@/h,
When plugged into Schrédinger equation, we found the two following relations
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Let’s go one step forward. Can we use this way of writing the wavefunction to
find stationary solutions ¢ g7

Vg (z,t) = A(z)eS@)/he=iBt/h

In general, the amplitude depends on time: A(z,t), but for stationary states:
A(z). In solving eq. (2), assume

RS < B 3
then eq.(2) gives just
E= > +V = plx)=+2mE-V(z))
2m

When taking the approximation above, when is the inequality true?
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this means that the amplitude of the wavefunction should not change much over
a wavelength. The phase is given by

From eq. (1),
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and finally, taking the exponential in both sides and absorbing all constants into
c,

For stationary states, the first term vanishes and thus V - J = 0. Recall also
that we wrote » »
J== p==A%
m m
which should be a constant, since it can not depend on z. The density p = A?

is largest where the momentum is small,
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A pretty good approximation to a stationary solution is then
bp(a) = — ot i e/
V(@)

unless the approximation (3) doesn’t hold. Note also that there are actually
two solutions 7/’E and v, with normalization constant Cy, —C_.

Particle in a box
For a 1-dim box located at the interval [0...a], we must have C; = —C_ and
the stationary solution is

v@) = —ssin (5 [ ).

but it is also required that 1(x = a) = 0, thus it is required
x
/ p(x')dx’ = nrh,
zo
which is equivalent to Bohr-Sommerfeld quantization condition:

1
7}1{ p(z)dx = 2mn.
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Note that the factor 2 comes about because for a ”closed path” as required in
the Bohr-Sommerfeld condition we have to go from 0 to a and back to 0.

Constant potential V/

If a particle follows a closed path where V(7) is constant, then the closed loop
integral around a path of length L simply becomes p- L = 2nzh. This condition
can help us understand why only certain orbits are allowed. For a classical path
around the Hydrogen atom, circular orbit of radius R:
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For a Hydrogen atom, the binding energy F

V(R) _ ¢
Tiin = |B| = 2 = .

In addition, p = v/2mTk;n, then
2mE - £ nh

and finally

E=———
2h2n2’
which corresponds to what we already know. However, for non-circular orbits,
this procedure can get really messy.

Potential barrierl V > FE

If V(x) > E, p(z) is imaginary and the solution is then
ei(iz/h) I Ipa")]da’ _ ei(ﬁ/h) 3y W2m(V=E)|dz"

The wavefunction must be exponentially falling, otherwise is not normalizable.

Consider a short range nucleus potential. Classically, the particle cannot
escape. The probability of finding it at z > a is

P(z>>a) ~ Pz < a)-e¢ 2Jd v2m(V=E)

the exponent factor in the exponential is known as the barrier (to get through).
For example, an a-particle (He') inside a big fat Uranium (U) atom: it will
bounce between the potential like a pinball, and eventually (~ billion years),
the « particle will get through the potential barrier, i.e. the U atom emits an



a-particle.

Smooth Potential
If the potential has a smooth but non-trivial dependence on x where for some x.
it becomes equal to E , we can always restrict the solution to the Schrodinger
equation to a short interval around x., where a linear approximation for the
potential is helpful

V(z) = V(zo) + V' (z0)(x — x0),

then it is possible to solve the Schrodinger equation in this region with the
approximated potential
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and use the WKB method elsewhere (with the usual imaginary exponent where
V < E and the negative, real exponent where V' > E) to smoothly connect on
both sides.

Typically, this leads to a modification of the quantization condition,

a
1
/ p(2')dx’ = nwh+ =nh.
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