Lecture 11 - the WKB method

Any wave function in coordinate space (1-dim) can be written as

$$
\psi(x)=A(x) e^{i S(x) / \hbar}
$$

When plugged into Schrödinger equation, we found the two following relations

$$
\begin{align*}
\dot{A} & =-\frac{1}{m} \frac{\partial A}{\partial x} \frac{\partial S}{\partial x}-\frac{1}{2 m} A \frac{\partial^{2} S}{\partial x^{2}} \tag{1}\\
\dot{S} & =\frac{1}{A} \frac{\hbar^{2}}{2 m} \frac{\partial^{2} A}{\partial x^{2}}-\frac{1}{2 m}\left(\frac{\partial S}{\partial x}\right)^{2}-V \tag{2}
\end{align*}
$$

Let's go one step forward. Can we use this way of writing the wavefunction to find stationary solutions ψ_{E} ?

$$
\psi_{E}(x, t)=A(x) e^{i S(x) / \hbar} e^{-i E t / \hbar}
$$

In general, the amplitude depends on time: $A(x, t)$, but for stationary states: $A(x)$. In solving eq. (2), assume

$$
\begin{equation*}
\frac{1}{A} \frac{\hbar^{2}}{2 m} \frac{\partial^{2} A}{\partial x^{2}} \quad \ll E \tag{3}
\end{equation*}
$$

then eq.(2) gives just

$$
E=\frac{p^{2}}{2 m}+V \quad \Rightarrow \quad p(x)=\sqrt{2 m(E-V(x))}
$$

When taking the approximation above, when is the inequality true?

$$
\frac{1}{A} \frac{\partial^{2} A}{\partial x^{2}} \ll\left(\frac{p}{\hbar}\right)^{2}=\left(\frac{2 \pi}{\lambda}\right)^{2}
$$

this means that the amplitude of the wavefunction should not change much over a wavelength. The phase is given by

$$
S(x)=\int_{x_{0}}^{x} p\left(x^{\prime}\right) d x^{\prime}
$$

From eq. (1),

$$
2 \frac{\partial A}{\partial x} p=-A \frac{\partial p}{\partial x}
$$

$$
\begin{aligned}
\Rightarrow \quad \frac{\partial A}{A} & =-\frac{1}{2} \frac{\partial p}{p} \\
\Rightarrow \quad \ln \left(\frac{A}{A_{0}}\right) & =-\frac{1}{2} \ln \left(\frac{p}{p_{0}}\right)
\end{aligned}
$$

and finally, taking the exponential in both sides and absorbing all constants into C,

$$
A(x)=\frac{C}{\sqrt{p(x)}}
$$

recall also that eq. (1) reproduces the continuity equation:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{J}=0
$$

For stationary states, the first term vanishes and thus $\nabla \cdot \vec{J}=0$. Recall also that we wrote

$$
\vec{J}=\frac{p}{m} \cdot \rho=\frac{p}{m} A^{2}
$$

which should be a constant, since it can not depend on x. The density $\rho=A^{2}$ is largest where the momentum is small,

$$
A^{2} \sim \frac{1}{p}
$$

A pretty good approximation to a stationary solution is then

$$
\psi_{E}(x)=\frac{C}{\sqrt{p(x)}} e^{i \int_{x_{0}}^{x} p\left(x^{\prime}\right) d x^{\prime} / \hbar}
$$

unless the approximation (3) doesn't hold. Note also that there are actually two solutions ψ_{E}^{+}and ψ_{E}^{-}, with normalization constant $C_{+},-C_{-}$.

Particle in a box

For a 1-dim box located at the interval $[0 \ldots a]$, we must have $C_{+}=-C_{-}$and the stationary solution is

$$
\psi(x)=\frac{B}{\sqrt{p(x)}} \sin \left(\frac{1}{\hbar} \int_{x_{0}}^{x} p\left(x^{\prime}\right) d x^{\prime}\right)
$$

but it is also required that $\psi(x=a)=0$, thus it is required

$$
\int_{x_{0}}^{x} p\left(x^{\prime}\right) d x^{\prime}=n \pi \hbar
$$

which is equivalent to Bohr-Sommerfeld quantization condition:

$$
\frac{1}{\hbar} \oint_{\text {orbit }} p(x) d x=2 \pi n
$$

Note that the factor 2 comes about because for a "closed path" as required in the Bohr-Sommerfeld condition we have to go from 0 to a and back to 0 .

Constant potential V

If a particle follows a closed path where $V(\vec{r})$ is constant, then the closed loop integral around a path of length L simply becomes $p \cdot L=2 n \pi \hbar$. This condition can help us understand why only certain orbits are allowed. For a classical path around the Hydrogen atom, circular orbit of radius R :

$$
\begin{aligned}
\frac{1}{\hbar} \oint_{\text {orbit }} p(x) d x & =\frac{1}{\hbar} \int p d x \\
& =2 n \pi \\
& =2 \pi R p \\
\Rightarrow \quad R p & =n \hbar .
\end{aligned}
$$

For a Hydrogen atom, the binding energy E

$$
T_{k i n}=|E|=\frac{|V(R)|}{2}=\frac{e^{2}}{2 R} .
$$

In addition, $p=\sqrt{2 m T_{k i n}}$, then

$$
\sqrt{2 m E} \cdot \frac{e^{2}}{2 E}=n \hbar
$$

and finally

$$
E=-\frac{m e^{4}}{2 \hbar^{2} n^{2}},
$$

which corresponds to what we already know. However, for non-circular orbits, this procedure can get really messy.

Potential barrierl $V>E$
If $V(x)>E, p(x)$ is imaginary and the solution is then

$$
e^{ \pm\left(i^{2} / \hbar\right) \int_{x_{0}}^{x}\left|p\left(x^{\prime}\right)\right| d x^{\prime}}=e^{\left. \pm i^{2} / \hbar\right) \int_{x_{0}}^{x}|\sqrt{2 m(V-E)}| d x^{\prime}} .
$$

The wavefunction must be exponentially falling, otherwise is not normalizable.
Consider a short range nucleus potential. Classically, the particle cannot escape. The probability of finding it at $x \gg a$ is

$$
P(x \gg a) \sim P(x<a) \cdot e^{-2 \int_{a}^{x} \sqrt{2 m(V-E)}}
$$

the exponent factor in the exponential is known as the barrier (to get through). For example, an α-particle (He^{4}) inside a big fat Uranium (U) atom: it will bounce between the potential like a pinball, and eventually (\sim billion years), the α particle will get through the potential barrier, i.e. the U atom emits an
α-particle.

Smooth Potential

If the potential has a smooth but non-trivial dependence on x where for some x_{e} it becomes equal to E, we can always restrict the solution to the Schrödinger equation to a short interval around x_{e}, where a linear approximation for the potential is helpful

$$
V(x)=V\left(x_{0}\right)+V^{\prime}\left(x_{0}\right)\left(x-x_{0}\right),
$$

then it is possible to solve the Schrödinger equation in this region with the approximated potential

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V^{\prime}\left(x-x_{0}\right) \psi=0
$$

and use the WKB method elsewhere (with the usual imaginary exponent where $V<E$ and the negative, real exponent where $V>E)$ to smoothly connect on both sides.

Typically, this leads to a modification of the quantization condition,

$$
\int_{0}^{a} p\left(x^{\prime}\right) d x^{\prime}=n \pi \hbar+\frac{1}{2} n \hbar .
$$

