
Lecture 10

From last discussion, QM has both wave and fluid aspects, is there a connection
betwen these 2?
Consider a state in the ~r representation (plane wave) to be

ψ(~r) = A(~r)eiS(~r)/~, (1)

were A(~r) = A and S(~r) = S are taken to be real functions. Consider also
Schrödinger’s equation with a potential V (~r):
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Since A and S are real functions, every term is either real or imaginary.
Equate first all imaginary terms, this gives:

i~Ȧ = − i~
m
∇A · ∇S − i~
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A∇2S

Ȧ = − 1

m
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2m
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multiplying both sides by 2A

2AȦ = −2A

m
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m
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allows to rewrite the expression in the following way

∂A2
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)
. (3)
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This expression seems neat but what does it represent? Note first that |ψ|2 = A2

is the probability density ρ; then, what is∇S? it can be regarded as momentum,
since S for a free particle is S = ~p · ~r. Then A2∇S is the current density 1. So
Eq. 3 simply restates the continuity equation

∂ρ

∂t
= −∇ ~J

which we know to be correct.
Equate now all the real terms in eq.(2), this gives
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An approximation is to be made in here. Assume that the first term can be
ingored, since it is the only term that contains ~ (and even squared). This is
equivalent to asking the gradient of A to change really slow over 1 wavelength,
or the envelope to be more less linear over several wavelengths. Then

−AṠ =
1

2m
A(∇S)2 + V A

Ṡ = − 1

2m
(∇S)2 − V

= −m
2

(~v)2 − V

the first term looks like the kinetic energy. How is this equation interpreted?
Take the gradient of the whole equation:

∇Ṡ = −m(~v · ∇)~v −∇V

d~p

dt
=
∂~p

∂t

∣∣∣∣
position

+ ~v · ∇~p,

this is the convective derivative, the second term tells how the momentum of
a given point (tiny volume) within the fluid is changing as the point moves
in the direction of ~v. Thus Schrödinger equation tells that momentum follows
Newton’s law. The probability density behaves like a fluid following Newton’s
law. We’ve started with a wave picture of QM and checked how it supports a
fluid picture.

Wigner function

Phase space

In classical mechanics, for a point particle you need to know both its initial
position and its initial momentum to know how it will move in the future. This

1This can also be proven exactly by applying the definition of the probability current
density to our Ansatz for the wave function, Eq. 1.
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corresponds to a point in 6-dimensional phase space. Similarly, for a fluid (an
infinite number of ”point particles”), just knowing the (probability) density
ρ(~r) doesn’t tell you its future state. You need to know also the flow which is
proportional to the momentum, i.e. you need the 6 dimensional phase space
density ρ(~r, ~p).

For a particle, Hamilton’s equations of motion completely specify its trajec-
tory in phase space, whereas for a fluid, we can pick a (small) volume in phase
space and then Hamilton’s equation will tell us how it will evolve in the future.
Louville’s theorem states the following:

The volume occupied by a “fluid” in phase space is conserved if the Hamiltonian
is independent of time .

This theorem is for instance important for accelerator design and optics
(where one can reduce the spatial extend of a light beam, but only by simulta-
neously increasing its divergence).
Is it then possible to introduce a function ρ(~r, ~p)→W (~r, ~p) (Wigner function),
so that it gives the probability to find a particle with ~r and ~p? This seems
to be in conflict with QM, since one cannot measure momentum and position
with simultaneously with arbitrary position. However, it is still useful to have a
Wigner function that mimics some of the aspects of a true probability distribu-
tion, in particular for the calculation of expectation values (both of commuting
and non-commuting pairs of operators).
The Wigner function is now defined in 3-dim (3 coordinates and 3 momenta):
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∫∫∫
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but lets work on it in just 1-dim (1 spatial coordinate and 1 momentum):
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What should this function satisfy if it is to be taken as a joint probability
density?

• It should be real: W = W ∗

This is already satisfied, for taking the complex conjugate gives

W (x, p) =
1

2π~

∫
dx′eipx

′/~ψ
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2

)
ψ∗
(
x+
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2

)
and it is always possible to take x′′ = −x′, in which case we have W = W ∗.

• W (p, x) should be positive definite (Probability should range in 0 < ρ <
1).
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This is not true, since Wigner function can also be negative, but we just ignore
this fact.
Integrate now the Wigner function over all momenta∫ ∞

−∞
dpW (x, p) =
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Recall that ∫ ∞
−∞

dpe−ipx
′/~ = 2π~δ(x′),

then it is found ∫ ∞
−∞

dpW (x, p) = ψ (x)ψ∗ (x) =
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∣∣2,
which is in fact the probability density in configuration space.

Integrate now the Wigner function over all coordinates∫ ∞
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this is not straightforward since ψ and ψ∗ also depend on x. Introduce, however,
the following change of variables
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thus dxdx′ = dx1dx2 and∫ ∞
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Given the Wigner function W (x, p), it is possible to calculate 〈pn〉 and 〈xn〉.
What is

1

2π~

∫
dppW (x, p)?

Taking W (x, p) as the joint probability density, this should give the expectation
value of p at a specific point x:
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where integration by parts was used in the second line. Integration over p gives
again the delta function 2π~δ(x′) and finally,
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where we apply the definition of the current density j(x) and our interpretation
of it in terms of local density times local momentum.
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