Perfect Blackbody Spectrum

Real Sun

Quantum Mechanics in 20 min

- 1 Many observables are quantized (i.e., cannot change by an arbitrarily small amount)
 - 1 Light waves: Energy for a specific frequency f can only be absorbed or emitted in chunks (photons) of E = hf
 - 2 Possible energy for hydrogen atom can only assume values $E_n = -Ry/n^2$ (see next slide)
 - (3) Angular momentum can only change by multiples of $\hbar = h/2\pi$
- (2) All other observables are intrinsically uncertain
 - (1) Position: $x...x+\Delta x$
 - (2) Momentum: $p...p+\Delta p$
 - (3) Heisenberg: $\Delta x \cdot \Delta p \ge \hbar/2$
- (3) Picture: particle motion described by waves ("wave function" ψ) that cannot be located precisely. Quantization \rightleftharpoons Standing Waves

Quantum Mechanics in 20 min

- (1) Electron "motion" in hydrogen atom (nucleus = proton): standing wave described by wave function $\psi(\mathbf{r})$
- ② Schrödinger: Wave function is solution of the equation $\mathbf{H}\psi(\mathbf{r}) = E\psi(\mathbf{r})$, where E is a possible energy "eigenvalue" and \mathbf{H} is a differential operator ("The Hamiltonian")

(3) Hydrogen atom: Only possible energies are $E_n = -Ry/n^2$ with Ry = 13.6 eV and n = 1 integer. In general all atoms have a fixed series of possible energies E_n

Light can only be emitted with frequencies given by $hf = E_n - E_m$

Quantum Mechanics and Line Spectra

