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Greek Alphabet 
Capital Α        Β      Γ           Δ        Ε          Ζ    Η      Θ      Ι       Κ          Λ          Μ 

Lowercase α        β       γ            δ        ε           ζ η     θ, ϑ   ι      κ         λ         µ 

Name alpha  beta  gamma  delta  epsilon  zeta   eta   theta   iota  kappa lambda   mu 
Capital Ν       Ξ     Ο              Π       Ρ        Σ         Τ    Υ          Φ        Χ        Ψ       Ω 

Lowercase ν        ξ      ο              π        ρ        σ τ     υ          φ, ϕ     χ         ψ       ω 

Name nu      xi    omicron   pi      rho    sigma   tau   upsilon phi     chi      psi    omega 
 

Fundamental constants: 
Speed of light: c = 2.9979.108 m/s (roughly a foot per nanosecond) 
Planck constant: h = 6.626.10-34 J s; ! = h / 2π 
Fundamental charge unit: e = 1.602.10-19 C 
Electron mass: me = 9.109.10-31 kg 
Coulomb’s Law constant: k = 1/ 4πε0 = 8.988.109 Nm2/C2 
Gravitational constant: G = 6.674.10-11 Nm2/kg2 
Avogadro constant: NA = 6.022.1023 particles per mol 
Boltzmann constant: k = 1.38.10-23 J/K = 8.617.10-5 eV/K; R = NA

. k = 8.314 J/K/mol 
 

Useful conversions: 
1 fm (= 1 “Fermi”) = 10-15 m, 1 nm = 10-9 m = 10 Å; 1 PHz = 1015 Hz (“Petahertz”) 
1 eV = e . 1V = 1.602.10-19 J (Energy of elementary charge after 1 V potential difference) 
1 keV = 1000 eV, 1 MeV= 106 eV, GeV = 109 eV, 1 TeV = 1012 eV (“Tera-electronvolt”) 
New unit of mass m: 1 eV/c2 = mass equivalent of 1 eV (Relativity!) = 1.78.10-36 kg 
Momentum p: 1 eV/c = 5.34.10-28 kg m/s; p in eV/c = mass in eV/c2 times velocity in units of c 
Planck contant: ! = h/2π = 197.33 eV/c . nm = 6.582.10-16 eV . s = 0.658 eV/PHz 
Fine-structure constant: α = e2 / 4πε0!c = 1/137.036 
Electron mass: me = 510,999 eV/c2 ≈  0.511 MeV/c2  
Muon mass: mµ = 105.658 MeV/c2 ≈  207 . me 
Proton mass: mp

 = 938.272 MeV/c2 ≈  1836 . me  
Neutron mass: mn = 939.565 MeV/c2 ≈  1839 . me 
Atomic mass unit (1/12 of the mass of a 12C atom): u = 931.494 MeV/c2  ≈  1823 . me 
Rydberg constant: Ry = me c2 α2/ 2 = 13.606 eV 
Bohr Radius: a0 = !c / (me c2 α) = 0.0529 nm (roughly ½ Å). 
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Special Relativity: 
For an inertial system S’ moving along the x-axis of S with constant velocity v < c, and 
with all axes aligned and the same origin (x = y = z = ct = 0 ó x’ = y’ = z’ =  ct’ = 0): 

γ =
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1− v2 / c2
; x ' = γ x − v
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Clocks in S’ appear to S as if they were going slow by factor 1/γ, and vice versa. 
Length of object at rest in S’ appears contracted by factor 1/γ in S.
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Four-vectors: xµ = (ct, x, y, z); xµ = (ct,−x,−y,−z)  (µ=0,1,2,3 for ct,x,y,z). 

Invariant interval between two events (=points in 4-dim. space-time):
Δxµ = Δct,Δx,Δy,Δz( )⇒Δs2 = ΔxµΔxµ = Δct

2 −Δx2 −Δy2 −Δz2  (same in all inertial 

systems. ) 
Positive Δs2: “time-like separation”, Δs2 = square of elapsed eigentime cτ in a system that 
travels from the start point (event) to the end point (event) of the interval. 
Negative Δs2: “space-like separation”, -Δs2 = square of distance between the two events in a 
system (which always exists!) where they occur simultaneously. 
Δs2 = 0: “light-like separation”; a light ray could travel from one event to the other. 

Four-momentum: Pµ = E / c,Px,Py,Pz( ) = (Γmc,Γm!u); Γ = 1
1− "u2 / c2

. Sum of all 

momenta is conserved in collisions, separately for each component. 0th component times c 
is total energy, including kinetic and rest mass energy (Erest = mc2). Transformation of Pµ to 
coordinate system S’ is analog to xµ (see above). 

Invariant: PµPµ =
E 2

c2
−
!
P2 =m2c2 ⇒ E = m2c4 +

!
P2c2 ;

!u
c
=

!
Pc
E

. 

Quantum Mechanics: 
Formal/abstract: All possible knowledge about a system is encoded in its state vector ψ
- often only probabilities can be predicted. State vectors are members of a (complex) 
Hilbert space: they can be added, multiplied by a complex number (scalar), and we can 
define a scalar product ψ1 ψ2  (= some complex number c, with ψ2 ψ1 =c*). All state 
vectors must be normalizable and by convention are normalized to 1: ψ ψ =1 . 
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Example: Motion in Motion in 1D => state vector represented by “wave function” ψ(x). 
Addition: [ψ1 +ψ2 ](x) =ψ1(x)+ψ2 (x) . Multiplication with scalar: [cψ1](x) = cψ1(x) . 

Scalar product: ψ1 ψ2 = ψ1
*(x)ψ2 (x)dx

−∞

∞

∫ . Normalizable: ψ ψ =
!

ψ*(x)ψ(x)dx
−∞

∞

∫ <∞ . 

Probability to find particle in interval x…x+dx: 
(assuming normalized state vector, ). 

Formal/abstract: Operators are linear functions turning vectors into other vectors: 
O ψ = ϕ ;O c ψ!" #$= c ϕ ;O ψ1 + ψ2

!" #$=O ψ1 +O ψ
2
. A vector ϕω  is called an 

eigenvector of an operator O with eigenvalue ω (=complex number) IF O ϕω =ω ϕω . 

Observables are represented by (Hermitian) operators Ω  with only real eigenvalues ωi. 
Any measurement of the observable must give one of these eigenvalues as result. After we 
measure ωi, the system will be in the state described by vector ϕωi

 (“collapse of the wave 

function”). The probability to measure this particular eigenvalue for a state described by 

ψ  is given by Pr(ωi ) = ϕωi
ψ

2
. The average (expectation value) for the observable over 

many independent trials with the same initial state ψ  is Ω
ψ
= ψ Ω ψ  with standard 

deviationσΩ = Ω2 − Ω
2 .  

Example: Motion in Motion in 1D => Important observables:  
Position → eigenvectors ψx0

(x) = δ(x − x0 )  w/ eigenvalue x0; Momentum 

 → eigenvectors ψp0
(x) = eip0x/!  w/ eigenvalue p0; Hamiltonian (= total 

energy, kinetic plus potential): . 

Heisenberg’s uncertainty principle: Position x and momentum p cannot be predicted with 
arbitrary precision simultaneously; σxσp ≥ !/2. 
Formal/abstract: Time evolution (Schrödinger Equation): State vector becomes function 

of time: ψ (t) ; ∂
∂t
ψ (t) = 1

i!
H ψ (t)  where H is the Hamiltonian operator. 

Eigenstates of H: H ϕE = E ϕE   => “stationary” solutions of Schrödinger Equation: 

ψE (t) = ϕE e−iEt/!   (no time dependence for any observable). 

Example: Motion in 1D => Eigenvalue equation: − !
2

2m
∂2

∂x2
ψ(x)+V (x)ψ(x) = Eψ(x) . 

Solution: “Stationary States”. Eigenstates of the free Hamiltonian (V(x) = 0): 

ψp(x, t) = Ae
i
!
px
e
−
i
!
p2

2m
t

 (simultaneously eigenstates of momentum operator) 

d Pr(x...x + dx) = ψ(x) 2 dx =ψ(x)*ψ(x)dx
ψ ψ =1

Xψ(x) = x ⋅ψ(x)

Pψ(x) = !
i
∂
∂x
ψ(x)

Hψ(x) = P2

2m
+V (X)
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ψ(x)+V (x)ψ(x)
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Gaussian Wave Package: 
= Linear combination of  “free Hamiltonian eigenstates” (but not an eigenstate itself), with 
Gaussian weighting over a range of momenta. At time t = 0: 

ψGWP (x, t = 0) =
1
2πσ p

e
−
( p−p0 )
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4σ p
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;σ x =
!
2σ p

 

Average momentum p0, with standard deviation σp. Average position x = 0; standard 

deviation for position is σ x =
!
2σ p

which is the smallest possible given Heisenberg’s 

Uncertainty Relation. However, σx will increase with time while σp is constant.  
Eigenstates of a 1-dim. square well potential (V(x) = 0 for 0 ≤ x ≤ L , infinite elsewhere): 

ϕn (x) =
2
L
sin nπ x

L
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, n = 1, 2, … 

Eigenstates of Harmonic Oscillator: 

H =
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H0 (y) =1; H1(y) = y; H2 (y) = (2y
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, n = 0,1,…

 
H0 (y) =1, H1(y) = 2y, H2 (y) = 4y
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Quantum Mechanics in 3D: 
Cartesian coordinates: (x,y,z) 

ψ(x, y, z);H = −
!2

2m
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
#

$
%

&

'
(+V (x, y, z); ΔPr(

!r,Δτ ) = ψ(x, y, z) 2 Δτ
 

(Small volume Δτ =  ΔxΔyΔz located at position (x,y,z)).  
Separation of variables: Look for solutions for the eigenvalue equation of the type 
ψ(x, y, z) =ψ1(x)ψ2 (y)ψ3(z)

 Example: Infinite square well in 3D: 

ϕnjk (x, y, z) =
8
L3
sin nπ x

L
sin jπ y

L
sin kπ z

L
; Enjk = (n

2 + j2 + k2 ) !
2π 2

2mL2  
Spherical coordinates: r, θ, φ 
Small volume for probability: Δτ =  r2Δr sinθΔθ Δφ 
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Hamiltonian in spherical coordinates: 

H = −
!2
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Here, 
!
L2  is the squared orbital angular momentum operator with eigenfunctions 

Yℓm (ϑ ,ϕ );
"
L2Yℓm = #

2ℓ(ℓ+1)Yℓm ; ℓ = 0,1, 2…;LzYℓm = #mYℓm ;m = −ℓ,−ℓ+1,…,ℓ
 (Lz is the z-component of the angular momentum operator). Examples: 

Y00 (ϑ ,ϕ ) =
1
4π
;

  
Separation of variables: Look for eigenstates of the Hamiltonian of form 
ψEℓm (r,ϑ ,ϕ ) = RE,ℓ(r)Yℓm (ϑ ,ϕ )with

  
−
!2

2m
1
r2

∂
∂r
r2 ∂
∂r
RE,ℓ(r)+

!2ℓ(ℓ+1)
2mr2

RE,ℓ(r)+V (r)RE,ℓ(r) = E ⋅RE,ℓ(r)
 

Probability to find particle in volume Δτ at position (r, θ, φ): ψEℓm (r,ϑ ,ϕ )
2
Δτ  

Radial probability distribution: ΔPr(r…r+Δr) = | RE,ℓ(r)|2 r2Δr 
Hydrogen-like atoms:  
(Nucleus of mass m2 and charge Ze, bound particle of mass m1 and charge –e) 

V (r) = − Ze2

4πε0r
= −

Zα!c
r    

α = e2 / 4πε0!c
 

Mass must be replaced by “reduced mass” of 2-body system with masses m1 and m2: 

µr =
m1m2

m1 +m2  
Energy Eigenvalues: 

Enℓ = −
µr

me

Z 2

n2
Ry

 
(n = 1, 2, … ; Ry = me c2 α2/ 2 = 13.6 eV). Degenerate in

 
ℓ
 
and m; ℓ =0, 

1,…, n-1, mℓ = -ℓ…+ℓ; also degenerate in electron spin ms = ±1/2 => total degeneracy 2n2.  

Characteristic radius:
 
a = me

µrZ
a0

   
a0 = !c / (me c2 α) = 0.53 Å = 0.053 nm.

 
Eigenstates: ψn,ℓ,m (r,ϑ ,ϕ ) = Rn,ℓ(r)Yℓm (ϑ ,ϕ )  . Rn,ℓ(r) (examples): 

R1,0 (r) =
2
a3/2

e−r/a; R2,0 (r) =
2− r / a
8a3/2

e−r/2a; R2,1(r) =
r / a
24a3/2

e−r/2a
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Energy of a photon: Eγ = hf =  hc/λ 
Momentum of a photon: pγ = h/λ 
Light emitted or absorbed in transition with energy difference ΔE = Einit – Efinal:  
f = ΔE/h, λ = hc/ΔE = 2π!c/ΔE 
Pauli principle:  No two identical Fermions (spin-1/2, 3/2, … particles) can be in the same 
exact quantum state. (-> See Fermi-Dirac statistics) 

Nuclear Physics 
Mass-energy of an atom: (Z protons, N neutrons, A = Z+N): 
MAc2 = Z Mpc2 + N Mnc2 + Z mec2  – BE (Binding energy) 
typical binding energies BE = 7-8 MeV.A   with a maximum for nuclei around iron (A=56). 
Light nuclei have significantly lower BE per nucleon; beyond iron, the BE per nucleon 
decreases slowly with A (due to Coulomb repulsion). 
Energy liberated during a nuclear fusion reaction 1 + 2 -> 3: ΔE = M1c2 + M2c2 – M3c2  
Energy liberated during a nuclear decay 1 -> 2 + 3: ΔE = M1c2 - M2c2 – M3c2  
Density: roughly constant ρ = 0.16 Nucleons / fm3 = 2×1017 kg/m3 
Radioactive nuclei:  

alpha-decay: (Z,A) → (Z-2,A-2) + 4He + energy 
beta-plus decay: (Z,A) → (Z-1, A) + e+ + νe 
beta-minus decay: (Z,A) → (Z+1, A) + e- + νe  

Decay probability in time Δt: ΔPr(Δt) = Δt/τ (τ = lifetime = T1/2 / ln 2) 
Number of undecayed nuclei at time t (starting with N0): N(t) = N0 e

-t/τ 

Particle Physics 
Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle): 
quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-
neutrino, muon-neutrino, tau-neutrino) and their antiparticles: 
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Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics): 
Photon γ (electromagnetic interaction), W+, W-, Z0 (weak interaction), gluons (strong 
interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are 
massless; the latter gain mass (80-91 GeV/c2) through interaction with the Higgs field. 
All interactions proceed via gauge bosons coupling to various charges:  
- electromagnetic interaction: electric charge (+ or -) (all Fermions except neutrinos, plus W 
bosons) 
- weak interaction: weak charges (“weak isospin and weak hypercharge”) – all particles 
except photons, gluons 
- strong interaction: color charges (“red”, “green”, “blue”) – all quarks and gluons. 
 

Molecules and Condensed Matter 
Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up; 
binding through electrostatic attraction. 
Covalent Bond: Electron(s) shared between two atoms. Example: Let ψ1(

!re )  = wave 
function for hydrogen ground state with proton at position 1, and ψ2 (

!re )  for proton at 

position 2. Symmetric superposition ψS (
!re ) =

1
2
ψ1(
!re )+

1
2
ψ2 (
!re )  is attractive (net charge 

between protons), antisymmetric superposition ψA (
!re ) =

1
2
ψ1(
!re )−

1
2
ψ2 (
!re )  is non-

binding (zero net charge between protons). 
Metallic Bond: Many electrons (one or more per atom) shared between a large number N 
of atoms -> positively charged “rest atoms” in “Fermi gas” of electrons. Electron energy 
eigenstates are clustered in “bands”; highest (partially or totally unoccupied) band = 
conduction band, next lower (filled) band = valence band. Each band contains of order N 
eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the “rest 
atoms” gives rise to conductive heating, V = RI, and superconductivity (Bose-Einstein 
condensation of “Cooper pairs” of electrons). 
Conductors: partially filled conduction band and/or overlapping conduction and valence bands. 
Isolators: Completely empty conduction band, completely filled valence band, large band gap. 
Semi-conductors: Similar to isolators, but with smaller band gap. Can conduct at finite 
temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron 
donor (n-doped) or electron acceptor (p-doped) impurities. pn-junction = diode. 
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Thermal/Statistical Physics 
Boltzmann Distribution: number n(E) of atoms (molecules, …) out of an ensemble with a 
total of N atoms (…) with given energy E in a system with absolute temperature T (in K). 

Discrete energy levels Ei (e.g., quantum systems) with degeneracy gi (= number of 
eigenstates of the Hamiltonian with energy eigenvalue Ei): 

n(Ei ) =Cgie
−Ei /kT =

gi
e(Ei−µ )/kT

;C = eµ /kT = N / gie
−Ei /kT∑

 
(C is a normalization constant; µ is the “chemical potential”) 
Continuous energy levels E (classical system, e.g. monatomic gas) with state density 
g(E)dE (= volume in “phase space” between energy E and energy E + dE): 
dn(E...E + dE) =Cg(E)dE e−E /kT ;C = N / g(E)dE e−E /kT∫

 
State density for simple monatomic gas:  
g(E)dE = 4π p2dp = 4πm 2mEdE

 Consequences: Ideal gas law PV = nRT = n NA kT, (n = number of mols; N = n NA); 
average energy per degree of freedom (dimension of motion) = ½ kT  => total kinetic 
energy of a monatomic gas = 3/2 kT per atom or Etot = 3/2 n NA kT = 3/2 nRT 

Fermi-Dirac Distribution (for a system of indistinguishable Fermions): 

n(Ei ) = N
gi

e(Ei−µ )/kT +1
 

; µ here is right above the Fermi energy = the highest filled
 

energy level necessary to accommodate all N fermions, where all lower energy levels 
are filled with as many Fermions as the Pauli principle allows  
(= the state of a (degenerate) Fermi gas at (close to) zero temperature). 

Bose-Einstein Distribution (for a system of indistinguishable bosons): 

n(Ei ) = N
gi

e(Ei−µ )/kT −1
; µ here is right below the ground state energy (the lowest 

available energy level). If T goes to zero, all levels but that lowest energy level are 
empty = Bose-Einstein condensation. 

Photon density for black-body radiation:
 

dnγ (λ…λ + dλ)
dV

=
8π
λ 4

dλ
ehc/λkT −1

= 8π f 2

c3
df

ehf /kT −1  
Energy density (= energy contained in electromagnetic radiation of frequency f or wave 
length λ, per unit volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a 
photon gas - Planck’s Law): 
dE
V

= 8πh f
3

c3
df

ehf /kT −1
=
8πhc
λ 5

dλ
ehc/λkT −1  

; Energy flux/surface area
 
dE
dAdt

=
2πhc2

λ 5
dλ

ehc/λkT −1  


