PHYSICS 323 - Fall Semester 2016 - ODU

Greek Alphabet

Capital A B T A E Z H 66 I K A M
Lowercase o, By S € T n 6,9 1 K A u
Name alpha beta gamma delta epsilon zeta eta theta iota kappalambda mu
Capital N E O I P ) T 'Y P X v Q
Lowercase v E o T P o T v o, X P o
Name nu xi omicron pi rho sigma tau upsilonphi chi psi omega

Fundamental constants:

Speed of light: ¢ =2.9979'10° m/s (roughly a foot per nanosecond)

Planck constant: 4 = 6.62610* Js; hi=h/2n

Fundamental charge unit: e = 1.602'10™" C

Electron mass: m, = 9.10910°" kg

Coulomb’s Law constant: k = 1/ 4ngo= 8.98810° Nm*/C*

Gravitational constant: G = 6.674'10"" Nm’/kg”

Avogadro constant: N, = 6.022'10 particles per mol

Boltzmann constant: k = 1.3810% J/K = 8.61710° eV/K; R = N, k = 8.314 J/K/mol

Useful conversions:

1 fm (= 1 “Fermi”) = 10 m, l nm= 10" m = 10 A; 1 PHz = 10" Hz (“Petahertz™)
leV=e 1V=1.60210"J (Energy of elementary charge after 1 V potential difference)
1 keV =1000 eV, 1 MeV=10°eV,GeV = 10°eV, 1 TeV = 10"? eV (“Tera-electronvolt™)
New unit of mass m: 1 eV/c* = mass equivalent of 1 eV (Relativity!) = 1.78107° kg
Momentum p: 1 eV/c = 5.3410% kg m/s; p in eV/c = mass in eV/c” times velocity in units of ¢
Planck contant: /i = h/2n = 197.33 eV/c 'nm = 6.582107'° eV 's = 0.658 eV/PHz
Fine-structure constant: o. = e”/ 4meohc = 1/137.036

Electron mass: m, = 510,999 eV/c* = 0.511 MeV/c*

Muon mass: m, = 105.658 MeV/c* = 207 "m,

Proton mass: m,= 938.272 MeV/c* = 1836 m,

Neutron mass: m, = 939.565 MeV/c* = 1839 " m,

Atomic mass unit (1/12 of the mass of a '*C atom): u = 931.494 MeV/c> = 1823 "m,
Rydberg constant: Ry = m, ¢* o’/ 2 = 13.606 eV

Bohr Radius: a, = fic / (m, c* ) = 0.0529 nm (roughly A).
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Special Relativity:
For an inertial system S’ moving along the x-axis of S with constant velocity v < ¢, and

with all axes aligned and the same origin (x=y=z=ct=0® x’ =y’ =7"= ¢t =0):

1 % v
= x'=y|lx——=ct|;ct'=y|ct-——x|;y=y";z2=7'
! Vi-v?/¢? ]/( ¢ ) J/( ¢ ) v
Clocks in S” appear to S as if they were going slow by factor 1/y, and vice versa.

Length of object at rest in S’ appears contracted by factor 1/y in S.

w, v lu,
. " u u, c
Velocity addition: —+=-¢ €, >~ !
uv c u.v
1+—=— I+~
cc cc

Four-vectors: x" =(ct,x,y,z2); x, =(ct,=x,—y,~z) (#=0,1,2,3 for ct.,x,y2).

Invariant interval between two events (=points in 4-dim. space-time):
Ax" = (Act,Ax,Ay,Az) = As® = Ax"Ax, = Act’ = Ax* = Ay’ = Az’ (same in all inertial

systems. )

Positive As*: “time-like separation”, As® = square of elapsed eigentime ¢t in a system that

travels from the start point (event) to the end point (event) of the interval.

Negative As”: “space-like separation”, -As” = square of distance between the two events in a

system (which always exists!) where they occur simultaneously.

As® = 0: “light-like separation”; a light ray could travel from one event to the other.

Four-momentum: P" = (E/c,Px,Py,PZ) =Tmc,Tmu); T = ; . Sum of all

Ji-a*/c?

momenta is conserved in collisions, separately for each component. 0" component times ¢
is total energy, including kinetic and rest mass energy (E,., = mc?). Transformation of P* to

coordinate system S’ is analog to x" (see above).
. E* - =
Invariant: P“P, == - P> =m’c’ = E=\m’c* + P’c’ ;
C

o=y

Pc
-

Quantum Mechanics:

Formal/abstract: All possible knowledge about a system is encoded in its state vector |1/J>
- often only probabilities can be predicted. State vectors are members of a (complex)

Hilbert space: they can be added, multiplied by a complex number (scalar), and we can
define a scalar product <1,U1 |1,U2> (= some complex number ¢, with <1,02 |1/J1> =c"). All state

vectors must be normalizable and by convention are normalized to 1: <1,U|1/J> =1.
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Example: Motion in Motion in 1D => state vector represented by “wave function” Y (x).
Addition: [y, + ¢, ](x) = y,(x)+y,(x). Multiplication with scalar: [cy, ](x) = cy,(x).

Scalar product: (y, |1, )= }wl (xX)y, (x)dx . Normalizable: <w|w>;jw*(x)w(x)dx <.

2
Probability to find particle in interval x...x+dx: dPr(x...x +dx) = |1,U(x)| dx = y(x) P(x)dx
(assuming normalized state vector, <1/J|1/}> =1).

Formal/abstract: Operators are linear functions turning vectors into other vectors:
Oly) =|g); O[c|1p>] =c|p): O[|1/Jl>+|I/J2>] = O|y,)+Oly), . A vector |@,) is called an
eigenvector of an operator O with eigenvalue w (=complex number) IF O|q0w> = a)|q0w> .
Observables are represented by (Hermitian) operators € with only real eigenvalues w,.

Any measurement of the observable must give one of these eigenvalues as result. After we

measure o;, the system will be in the state described by vector ‘(pwi> (“collapse of the wave
function”). The probability to measure this particular eigenvalue for a state described by

2
|1,U> is given by Pr(w,) = K(pw,- ‘1/}>‘ . The average (expectation value) for the observable over

many independent trials with the same initial state |y) is (Q) =(y|Q|y) with standard

=
deviation o, = <§22> —<Q>2 .

Example: Motion in Motion in 1D => Important observables:
Position X(x) = x-y(x)— eigenvectors ¢, (x)= O(x—x,) w/ eigenvalue xo; Momentum

hoo ) ; ) ) )
Py(x)= —_a—zp(x) — eigenvectors 1y, (x)=e™" w/ eigenvalue po; Hamiltonian (= total
i ox

2 2 2
energy, kinetic plus potential): Hy(x) = (;)_m +V(X )) PY(x)= —;—m:? Y(x)+V(x)y(x).

Heisenberg’s uncertainty principle: Position x and momentum p cannot be predicted with

arbitrary precision simultaneously; 6,0, > /2.

Formal/abstract: Time evolution (Schrodinger Equation): State vector becomes function
of time: |1/)> (1); ai|1p>(t) = th|1/J> () where H is the Hamiltonian operator.
t 1

Eigenstates of H: H|(pE> =E |(pE> => “stationary” solutions of Schrédinger Equation:

[wp (1) =|@;)e™" (no time dependence for any observable).
2 2
Example: Motion in 1D => Eigenvalue equation: —;—;—2'4/@) +V(x)yY(x) = Ep(x).
m ox
Solution: “Stationary States”. Eigenstates of the free Hamiltonian (¥(x) = 0):
i ip

Spx ot :
Y, (x,1)=Ae” e "> (simultaneously eigenstates of momentum operator)
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Gaussian Wave Package:

= Linear combination of “free Hamiltonian eigenstates” (but not an eigenstate itself), with

Gaussian weighting over a range of momenta. At time ¢ = 0:

1 w _P=p) 1 ; X A
4o, ¥ 2P0Y 462

Yoy (X,1=0)= e e dp= |[———e" e ;0 =—

o V2ro, :[c N2mo, 20,

Average momentum py, with standard deviation o,. Average position x = 0; standard

deviation for position is 0, = ——which is the smallest possible given Heisenberg’s

2ap

Uncertainty Relation. However, o, will increase with time while o, is constant.

Eigenstates of a 1-dim. square well potential (¥(x) =0 for 0 <x < L, infinite elsewhere):

2 nix n’m’h’
xX)=,|—sinf— [} E = ,n=1,2,...
7.0 L ( L ) 2ml’
Eigenstates of Harmonic Oscillator:
2 2
) PR
2m 2

(pn(x)=AHn( /”;—wx)e_”r;En =(n+Hho n=01...

H,(y)=1,H,(y)=2y,H,(y)=4y"-2;

mw 1/4 1 maw 1/4 1 maw 1/4
Y L TR L WL L I
4 (ﬂh) ' ﬁ(ﬂh) ’ \/§(ﬂh)

Quantum Mechanics in 3D:

Cartesian coordinates: (x,y,z)

Y(x,y,2);H= —ﬁ(i + Ll + i) +V(x,v,2); APr(7,AT) = |1/)(x,y,z)|2 At
2m\ox> 9y’ 97

(Small volume At = AxAyAz located at position (X,y,z)).

Separation of variables: Look for solutions for the eigenvalue equation of the type

Y(x,y,2) = Y, ()P, (MY5(2)

Example: Infinite square well in 3D:

8 . nmx . jmy . knz 22 g2
2 (x%,9,2)=,|—sin sin sin E  =(n"+j +k
Pk ($:3:2) ,/L3 I 7 7 B (" +j +k%)

h2ﬂ2
2ml’

Spherical coordinates: r, 6, ¢
Small volume for probability: At = r*Ar sinfA6 A¢
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Hamiltonian in spherical coordinates:

2 2
(19 28+1 1 asmﬂi 1 1 9 V)
2m\rPor or 1 sing 09 09 r’sin 198(;0

2
=—h—i2ir2i+ ! L +V(r)
2mr-or or 2mr

Here, L’ is the squared orbital angular momentum operator with eigenfunctions
Y, (9,¢); LY, =R (({+1)Y, ;(=0,12..;LY, =hmY, ;m=—l,—(+1,..,/

m > (m’

(L, is the z-component of the angular momentum operator). Examples:

Y (0,0) = %\/2E @ sind
T
— % i-(*059 =
V 7
Yoo (9,) = ,/

—1 3 ..
= -e'¥.sinf

2 Vor
Separation of variables: Look for eigenstates of the Hamiltonian of form
Y (@, 0,@) = RE ()Y, (0,¢)with
W19 n’ z(z + 1)

P Ry ()

R, ,(r)+V(r)R, ,(r)=E-R,,(r)

Probability to find particle in volume At at position (7, 6, ¢): |1//E,;m (r ,19,<P)|2 At
Radial probability distribution: APr(r...r+Ar) = | R, (r) r*Ar
Hydrogen-like atoms:

(Nucleus of mass m, and charge Ze, bound particle of mass m, and charge —e)

2
V(r)=- Ze __Zahe o = ¢/ dmeohc

4e,r r

Mass must be replaced by “reduced mass” of 2-body system with masses m, and m,:
mym,

r

m, +m,

Energy Eigenvalues:

2
E, =—:1’ %Ry (n=1,2,...;Ry=m,c*0’/ 2=13.6 eV). Degenerate in ¢ and m; ( =0,

e

l,...,n-1,m, = -(...+(; also degenerate in electron spin ms = +1/2 => total degeneracy 2n’.

Characteristic radius: a = %ao a,=he / (m,c*a) =0.53 A =0.053 nm.
u,

Eigenstates: ¥, (" 0.¢)=R, ,(r)Y,,(0.¢) . R (r) (examples):
2 2-rla
RI,O(r) = Fe / 5 Rz,o(") =

\/g as/z

r/a -r/2a

\/ﬁ a3/2

e—r/Za; R2)| (r) —
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Energy of a photon: E = hf = hc/A

Momentum of a photon: p, = h/A

Light emitted or absorbed in transition with energy difference AE = E, ;, —
f=AE/h,\ = hc/AE = 2nthc/AE

Pauli principle: No two identical Fermions (spin-1/2, 3/2, ... particles) can be in the same

Efi

nal:

exact quantum state. (-> See Fermi-Dirac statistics)

Nuclear Physics

Mass-energy of an atom: (Z protons, N neutrons, A = Z+N):
M * =ZMc*+ N M,c*+ Zmc* — BE (Binding energy)
typical binding energies BE = 7-8 MeV'A with a maximum for nuclei around iron (A=56).
Light nuclei have significantly lower BE per nucleon; beyond iron, the BE per nucleon
decreases slowly with A (due to Coulomb repulsion).
Energy liberated during a nuclear fusion reaction 1 + 2 -> 3: AE = M,c* + M,c> — M,¢*
Energy liberated during a nuclear decay 1 ->2 + 3: AE = M,¢* - M,c* — Msc?
Density: roughly constant p = 0.16 Nucleons / fm* = 2x10"” kg/m’
Radioactive nuclei:

alpha-decay: (Z,A) — (Z-2,A-2) + “He + energy

beta-plus decay: (Z,A) = (Z-1,A) +e" +v,

beta-minus decay: (Z,A) = (Z+1,A) +e + v,

Decay probability in time Az: APr(Af) = At/T (T = lifetime =T,/ In 2)

Number of undecayed nuclei at time ¢ (starting with N,): N(t) = N, e!"

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle):
quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-

neutrino, muon-neutrino, tau-neutrino) and their antiparticles:

Name | Symbol  Mass (MeV/c?)’ J B Q(e) Particle/antiparticle name Symbol | Q (e)
— Electron / Positronl18] e /et | -1/+1
Up u 2375 Y + +%
i i 19 =, &
bown | d 4808 % | +% | -7 Muon/Antimuonl!] WA A
! Tau/ Antitaul2'] /T | -1+
Charm c 1275 £25 A + +% _—
Strange | s 95 15 1, + -1, Electron neutrino / Electron antineutrino Ve ! Vg 0
Muon neutrino / Muon antineutrino®4] vy ! Vu 0
Top t 173210 £510+710 | % + +
Botom | b AT % | +% | - Tauneutrino/ Tau antineutrinol3 v/ Vy 0
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Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics):

Photon y (electromagnetic interaction), W*, W, Z° (weak interaction), gluons (strong
interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are
massless; the latter gain mass (80-91 GeV/c?) through interaction with the Higgs field.

All interactions proceed via gauge bosons coupling to various charges:

- electromagnetic interaction: electric charge (+ or -) (all Fermions except neutrinos, plus W
bosons)

- weak interaction: weak charges (“weak isospin and weak hypercharge”) — all particles
except photons, gluons

- strong interaction: color charges (“red”, “green”, “blue”) — all quarks and gluons.

Molecules and Condensed Matter

Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up;

binding through electrostatic attraction.
Covalent Bond: Electron(s) shared between two atoms. Example: Let y,(7,) = wave

function for hydrogen ground state with proton at position 1, and v, (7)) for proton at
1

2

between protons), antisymmetric superposition y,(7,) =

position 2. Symmetric superposition Y (r,) = —,(,) + %1]}2 (,) is attractive (net charge

1 - 1 oy
ﬁlpl(n)_ﬁwz(’;) 1S non-
binding (zero net charge between protons).
Metallic Bond: Many electrons (one or more per atom) shared between a large number N
of atoms -> positively charged “rest atoms” in “Fermi gas” of electrons. Electron energy
eigenstates are clustered in “bands”; highest (partially or totally unoccupied) band =
conduction band, next lower (filled) band = valence band. Each band contains of order N
eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the “rest
atoms” gives rise to conductive heating, V = RI, and superconductivity (Bose-Einstein
condensation of “Cooper pairs” of electrons).
Conductors: partially filled conduction band and/or overlapping conduction and valence bands.
Isolators: Completely empty conduction band, completely filled valence band, large band gap.
Semi-conductors: Similar to isolators, but with smaller band gap. Can conduct at finite
temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron

donor (n-doped) or electron acceptor (p-doped) impurities. pn-junction = diode.
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Thermal/Statistical Physics

Boltzmann Distribution: number n(E) of atoms (molecules, ...) out of an ensemble with a
total of N atoms (...) with given energy E in a system with absolute temperature 7 (in K).
Discrete energy levels E; (e.g., quantum systems) with degeneracy g, (= number of

eigenstates of the Hamiltonian with energy eigenvalue E)):

n(E,)=Cge ™" = _ 8 o N/Egie—Ei/kT

= (E-w)kT ?
e( )

(C 1s a normalization constant; u is the “chemical potential™)

Continuous energy levels E (classical system, e.g. monatomic gas) with state density
g(E)dE (= volume in “phase space” between energy E and energy E + dE):
dn(E..E+dE)=Cg(E)dEe™™" ;C=N/ f g(E)dE e ™™

State density for simple monatomic gas:

¢(E)dE = 4 p’dp = 4wm2mEdE

Consequences: Ideal gas law PV =nRT =nN, kT, (n=number of mols; N=nN,);
average energy per degree of freedom (dimension of motion) = 2 kT => total kinetic
energy of a monatomic gas = 3/2 kT per atom or E, , = 3/2 nN, kT = 3/2 nRT

Fermi-Dirac Distribution (for a system of indistinguishable Fermions):

n(E)=N Ll ; p here is right above the Fermi energy = the highest filled
+

E;—u)/kT
e( )

energy level necessary to accommodate all N fermions, where all lower energy levels
are filled with as many Fermions as the Pauli principle allows
(= the state of a (degenerate) Fermi gas at (close to) zero temperature).

Bose-Einstein Distribution (for a system of indistinguishable bosons):

n(E)=N % ; # here is right below the ground state energy (the lowest

available energy level). If T goes to zero, all levels but that lowest energy level are

empty = Bose-Einstein condensation.
dny()t...k+dit)_8;z dA f* df

dv - 7 ST ] - S M

Energy density (= energy contained in electromagnetic radiation of frequency f or wave

Photon density for black-body radiation:

length A, per unit volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a

photon gas - Planck’s Law):

dE fodr 8the dA dE  2mhc® dA
— =8mh— L = PERpT Energy flux/surface area A = PERRT

C



