## Elements of Astrophysics—Class notes 1/23/2015

Diffraction glass experiment—shows each "dot" of laser beam is displaced proportional to its wavelength.

- Furthermore, if temperature is high enough, a hot dilute gas of any element will emit a
  very specific set of wavelengths. The same gas at low temperature will absorb the same
  set of wavelengths from any light source behind it.
- By using the dark lines in spectrum, we can deduce what kind of elements are present in the star (at least in the photosphere).
- Absorption lines reveal temperature and chemical composition.

We can make two claims/predictions using **Quantum Mechanics**:

- 1. Lots of physics observations are quantized
  - a. Recall Planck's constant h... energy in electromagnetic radiation is quantized h\*f
- 2. If something isn't quantized, it's uncertain (in position, precision, etc.)
  - a. Ex: What is the probability of finding an electron between the range of  $[x, x+\Delta x]$ ? The probability of the exact point is ZERO.
  - b. This is also true for momentum  $[p, p+\Delta p]$
  - c. The product of the uncertainties is bounded by Heisenberg's uncertainty relationship:  $\Delta p \Delta x \ge h/2\pi/2 = \hbar/2$

How do we understand these two statements? Picture the behavior of waves. Recall:

E o = 
$$cos(kr - \omega t)$$

(plane wave): precisely known wave length (momentum), position spread out over all space

Conversely: Short pulse of electromagnetic radiation: Position well-defined, but wave length (momentum) very uncertain.

Within the context of an atom:

We cannot predict where an electron may exactly be.

Lowest possible energy E(of atom) = - Ry [Where R = -13.6 eV of a Hydrogen atom in ground state... this is its *exact* lowest energy] But it can go higher...

$$E n = -Ry * 1/(n^2)$$

Where n is some integer corresponding to the orbital levels.

Ex. E 2 of a Hydrogen atom would equal -3.4 eV (etc)

## \*\*Any number between these levels are NOT possible... no intermediate energies!\*\*

Ex. E\_n for a Hydrogen atom could never equal -8.5 eV (or another number between -13.6 and - 3.4) because it is in between orbital levels 1 and 2

Since energy can neither be created or destroyed, for E\_n to go from -13.6 eV to -3.4 eV that photon has an *exact* energy of hf = Ry  $[(1/n^2) - (1/m^2)]$  and thus can only emit/absorb the exact difference of energy between levels.

This is true for atoms as well as everyday objects ©