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Additional Resources

« Dan Maoz: “Astrophyics in a Nutshell”
 http://ww2.0du.edu/~skuhn/PHYS313/Home313.html

» http://nicadd.niu.edu/~bterzic/PHY S652/index.htm




Giant Stars

Reminder: Last stage
of stars after
completing Main
Sequence existence

— Core collapses

— Quter envelope

increases enormously

Sun-like stars:
Subgiants => Giants
Much more massive
stars: Supergiants
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Final Stages of Glants (=M,)

* Final C core collapse
« Shock wave

* Quter layers ejected
« "Planetary” Nebulae

Ring Nebula b Eskimo Nebula

Spirograph Nebula d Hourglass Nebula
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White Dwarfs

* Reminder: Last stages of sun )
and similar-sized stars omo oo wm oo

surface temperature (K)

Last stage: Helium burning stops, core
collapses and significant fraction of

mass gets ejected as planetary nebula ‘v , Q

 What happens with the core after the final collapse? =>
White Dwarf! (Example: Sirius B)

— Core contracts until “Fermi pressure” of electrons balances
gravitational attraction

— Final size typically <1% of present solar radius => Density 10°
times larger than that of the sun! Temperature 107K at center



Hydrostatic Equilibrium

We now present a simple model for a star in hydrostatic equilibrium.
Consider a think shell within a star in equilibrium. There are inward force acting on the shell
due to its gravitating mass and the outward force of gas pressure:

_GM(r) [p(r)4mr2dr)

F, = 2
F, = 4rmr?[P(r+dr) — P(r)] = 4wr?dP (445)
where M (r) is mass interior to the shell:
M(r) = 4m / p(F)F2dF. (446)
0

In hydrostatic equilibrium, these two forces are balanced, so

F, = F,
M(r r)dmridr
Arr’dP = -G ( )[p(rz) ] thin shell of thickness dr
dP GM (r)
— — = —p(r)——-2.
dr p(r) r2 surface

The equation above is the equation of hydrostatic equilibrium.

thin atmosphere
of scale height H



Example: Sirius B

* Visual companion of Sirius A, 50 yr orbit
- M=M

sun

— T=27,000 K, Lumi = 3% of sun => R =0.008 R, = 5500 km
— => density = 2-10° x density(sun) = 3:10° kg/m3; 1057 nucleons
2:1036 nucleons/m3 , 1036 e//m3; Atoms <1/20 of radius apart
* Pressure at center:

GM G 4mr’

dP=—r—2pdrz—r—2 P dr =

_4aGp?

rdr =

2.717Gp2R2

P(R) - P(0) = - ~39-10% N/m?

= P0)=

2 R 2 p2
47Gp frdr=—4EGp R
3 A 2

— ldeal Gas: P =nRT/V = 1.4-10"3 N/m? - T/K => several orders
of magnitude missing. Solution? => Degenerate Fermi-Gas



4.2.1 Matter at Quantum Densities

We saw in the previous section that when the core of a star exhausts its nuclear energy
supply, it contracts and heats up until reaching the ignition temperature of the next avail-
able nuclear reaction, and so on. After each contraction, the density of the core increases.
At some point, the distances between atoms will be smaller than their de Broglie wave-
lengths. At that point, our previous assumption of a classical (rather than quantum) ideal
gas, which we used to derive the equation of state, becomes invalid. To get an idea of the
conditions under which this happens, recall that the de Broglie wavelength of a particle of
momentum p is

h h h

— = ~ , 4.9

p (2mE)Z " (3mkT)1”2 (49)
m 8m.,(3m kT)*?

o~ g = e

For example, for the conditions at the center of the Sun, T = 15 x 10° K, we obtain

_8x 17 x107# g (3 x 9 x 10 g x 1.4 x 10-1% erg K—1 x 15 x 10°K)*/2
Pa ™ (6.6 x 1027 erg 53

3

=640 g cm™ (4.11)



Fermi-Dirac Distribution

The Fermi-Dirac phasehsp;;ce-disu'ibuﬁon, embodying these principles for an ideal gas
of fermions, is

iN — 2541 d*pdV 4.16)
exp (—,C—E":‘rm) L1 B
iNpp= | 2¥ P E bl<pr (4.17)
0 if [pl = pr

where pr, called the Fermi momentum, is the magnitude of the momentum corresponding
to the Fermi energy Er. Dividing by dV, we obtain the number density of electrons of a
given momentum p:

P :
n(p)dp=1 5P i<y (4.18)
| 0 if |pl > pr

Integrating over all momenta from 0 to py gives a relation between the electron density
and py:

_ [¥8m , 8w 4
nc—fu %14 dp—ﬁpf. (4.19)



Non-Relativistic Degeneracy

1 [
P= 3 fo n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n{p) recovers the classical equation of
state,

P = nkT. (4.24)

For a nonrelativistic> degenerate electron gas, however, we replace n(p) with the Fermi-
Dirac distribution in the degenerate limit (Eq. 4.18). Taking v = p/m,, we obtain instead

1 [¥ 8 p* 8 3\ h?
P, = _f el 3 — (= 33, (4.25)
3o him, 3hdm, 5 8 S5m,

Substituting into Eq. 4.25, we obtain a useful form for the equation of state of a degenerate
nonrelativistic electron gas:

3\ %3 hl AN
P, = (_) — (I) p3. (4.27)
T 20m.my




White Dwarf Structure

Center (most of volume):
— High density, degenerate Fermi gas

— Uniform temperature (high heat conductance)

« initially 10° K (from collapse),
quickly cools to a few 106 -

— mostly C, O

Shell (thin layer, 1% in R):
— hydrogen, helium

— insulates star, much lower T ->
much reduced radiation (=T

— further slowdown due to crystallization
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— Oldest white dwarfs have cooled to about 3500K
-> can estimate age of galaxy to 1010 yr



Interlude: Fermi Gas

« Pauli exclusion principle: No two fermions (spin 1/2 particles) can be
In the same quantum state

« Heisenberg uncertainty principle: ApAx = i => two states are
indistinguishable if they occupy the same “cell” dV-d3p = h3 in “phase
space” (except for factor 2 because of spin degree of freedom) => for
volume V and “momentum volume” d3p = 41rp2dp we find for the

Number of states between p...p+dp:

v ., V p N3 s N M. N
dp = N _ = L = =n(37*) n'”;, n=";, N =S _A
ant Y “ " 2K 3 py=h(37’) v T g 2

 Sirius B: p;= 670 keV/c for electrons (semi-relativistic - m, = 511 keV/c?!)

— total kinetic energy:

Vv
dN = 2ﬁ47[p2dp =

3h2 (9.71)2/3
T 5/3
4 Ntot .
;non-rel.

2 2/3
“pt v, 1LV p 3y P 300 NM(MZ)M(%) _

4

——pdp=—-"—---—"rs—-_L == — =
in Vo, L 2m b o 5 5 “2m 10m 1% 10m R?
vl = J EW) v o=
O P 1% Ve p4 3 3 sl N 1/3 3710(95) N3
c——p*dp=——L "N ¢ep,=ZheN, (377 ( "") = i+ yltra-relativistic
fp ﬂ2h3 p p T tot pf 4 tot( ) V



White Dwarf Stability

* Pressure:

2/3
2 2 37%) h?
JE _3n Ntso/f(SJrz)ZBiV'z/3 e NIS(,/ZS(SJIZ)M;V'S/3 =—( ) n°"3 ;non - rel.
p=_%iwor _) 10m dVv 10m 1/53m
dv 3n%) he
_%Nﬂ?’(&rz)m%V"m=%N§2§3(3n2)1/3V"4/3=—( l n*"? ; ultra - rel.
 Compare:
( ) ( 2/3
(3n2)2/3h2 ) 5/3 3(3ﬂ2) K2 A R s 1
2 02 ;non - rel. 573 s Res
P(O) 27Gp°R 5m, 2my _ R? 5m,2aG(2my, ) M
=T 5 7 /3 ( = 1/3
(3%) Che( 5 V2 3(322) e L, g2
;ultra - rel. 173 - € = M, .. !
4 2my | 87G(2my) M




White Dwarf Stability

* If R decreases, gravitational energy more negative:
dvi,  d | 3GM*\  3GM®
d(-R) dR\ 5R 5K’

« ...while kinetic energy goes up:

dES"  d (31 (%)” N3" _3h2(9ﬂ)2/3 N
d(-R) dR\10m\ 4 ) R* ) 5m\4) R~ |

 Compare: Equilibrium if sum of derivatives = 0

3GM? 3% (97 )\ N N3 o\ MoB
- + — =0= R-= o oC
5R* 5Sm\ 4 R’ mGM*\ 4 MO




=> Chandrasekhar Limit

For less massive, larger white dwarfs:
— R=5600 km (MIM_, )"V3=>V « 1/M; p x M?

sun

— pr =670 keV/c x (n/ng;,s5)"" = 670 keV/c x (MIM,,)*?

un

as mass increases, gas becomes
more and more relativistic and radius
becomes even smaller => runaway
collapse (R « M)

Mass limit M, = 1.4 M,

Mass (M/M.,)

Above that mass (for a stellar remnant after blowing off outer
hull) electron Fermi gas pressure not sufficient for stability ->
neutron Fermi gas (see later)



