Physics 313 Astrophysics	Spring 2009
Prof C. Hyde	chyde'@'odu.edu
www.odu.edu/~chyde/Teaching	
Homework 7	due Wed March 25, 2009

1) The speed of light in a medium of index of refraction n is c/n, where c is the speed of light in vacuum. Relativistic charged particles can travel in the medium with a velocity v such that c/n < v < c. In this case, the particle will emit visible light all along its trajectory. The light is emitted at an angle θ relative to the particle direction, with $\cos(\theta) = c/(nv)$. The index of refraction of water is 1.33.

The relativistic energy E of a particle of rest mass m is $\gamma = [1 - \beta^2]^{-1/2}$ $E=mc^2\gamma$ $\beta = v/c$.

- a. The rest mass of the electron is $mc^2=0.511$ MeV. Find the β value (close to 1) of an electron of energy 5.11 MeV.
- b. Find the Cerenkov angle for this electron in water.
- c. What is the lowest energy electron that will produce Cerenkov light in water (this limit is $\beta = 1/n$ since the cosine function cannot be >1).
- 2) An ultra-high energy cosmic ray proton can be slowed down by the following inelastic collision with the photons of the 3° K cosmic black body radiation (CBR)

 $\gamma + p \rightarrow \Delta \rightarrow p + \pi^0$.

The photons in the CBR have a typical energy of $2.5 \cdot 10^{-4}$ eV. The proton has a rest mass of $Mc^2=938 \cdot 10^6$ eV and the Δ -particle has a mass $M_{\Lambda}c^2 = 1232 \cdot 10^6$ eV. Consider just the head on collision $\gamma + p \rightarrow \gamma$ Δ . Energy and momentum must be conserved in this reaction. **Energy Conservation** $k+E=E_{A}$.

Momentum Conservation $Pc-k = P_{\Lambda}c$,

where k is the photon energy (and momentum times c), E is the proton energy, P is the proton momentum, E_{Δ} is the Delta energy and P_{Δ} is the Δ momentum. The following relativistic relation holds for any particle of mass m:

 $E^2 = (pc)^2 + (mc^2)^2$.

a. Using the energy and momentum conservation equations, as well as the energy-momentum-mass relation for the proton and Δ , find the minimum proton energy E such that the reaction $\gamma + p \rightarrow \Delta$ is allowed.