Physics 313 Astrophysics
Prof C. Hyde

Spring 2009
chyde' @'odu.edu
www.odu.edu/~chyde/Teaching
Homework 7
due Wed March 25, 2009

1) The speed of light in a medium of index of refraction n is c / n, where c is the speed of light in vacuum. Relativistic charged particles can travel in the medium with a velocity v such that $c / n<v<c$. In this case, the particle will emit visible light all along its trajectory. The light is emitted at an angle θ relative to the particle direction, with $\cos (\theta)=c /(n v)$. The index of refraction of water is 1.33 .

The relativistic energy E of a particle of rest mass m is
$E=m c^{2} \gamma \quad \gamma=\left[1-\beta^{2}\right]^{-1 / 2} \quad \beta=v / c$.
a. The rest mass of the electron is $\mathrm{mc}^{2}=0.511 \mathrm{MeV}$. Find the β value (close to 1) of an electron of energy 5.11 MeV .
$\gamma=E / m c^{2}=(5.11 \mathrm{MeV}) /(0.511 \mathrm{MeV})=10$;
$\beta=\left[1-1 / \gamma^{2}\right]^{1 / 2}=[1-0.01]^{1 / 2}=[0.99]^{1 / 2}=0.995$
b. Find the Cerenkov angle for this electron in water.
$\cos (\theta)=c /(n v)=1 /(n b)=1 /(0.995 * 1.33)=0.756$.
$\theta=40.9^{\circ}$.
c. What is the lowest energy electron that will produce Cerenkov light in water (this limit is $\beta=1 / \mathrm{n}$ since the cosine function cannot be >1).
$E=m c^{2} \gamma=m c^{2} /\left[1-\beta^{2}\right]^{1 / 2}=m c^{2} /\left[1-1 / \mathrm{n}^{2}\right]^{1 / 2}$
$\mathrm{E}=(0.511 \mathrm{MeV}) /\left[1-1 / 1.33^{2}\right]^{1 / 2}=(0.511 \mathrm{MeV}) /[0.435]^{1 / 2}$
$\mathrm{E}=0.775 \mathrm{MeV}$
Kinetic Energy $=\mathrm{E}-\mathrm{mc}^{2}=0.264 \mathrm{MeV}$.
2) An ultra-high energy cosmic ray proton can be slowed down by the following inelastic collision with the photons of the $3^{\circ} \mathrm{K}$ cosmic black body radiation (CBR)
$\gamma+\mathrm{p} \rightarrow \Delta \rightarrow \mathrm{p}+\pi^{0}$.
The photons in the CBR have a typical energy of $2.5 \bullet 10^{-4} \mathrm{eV}$. The proton has a rest mass of $\mathrm{Mc}^{2}=938 \cdot 10^{6} \mathrm{eV}$ and the Δ-particle has a mass $\mathrm{M}_{\Delta} \mathrm{c}^{2}=1232 \cdot 10^{6} \mathrm{eV}$. Consider just the head on collision $\gamma+\mathrm{p} \rightarrow$
Δ. Energy and momentum must be conserved in this reaction.
Energy Conservation $\quad \mathrm{k}+\mathrm{E}=\mathrm{E}_{\Delta}$.
Momentum Conservation $\mathrm{Pc}-\mathrm{k}=\mathrm{P}_{\Delta} \mathrm{c}$,
where k is the photon energy (and momentum times c), E is the proton energy, P is the proton momentum, E_{Δ} is the Delta energy and P_{Δ} is the Δ momentum. The following relativistic relation holds for any particle of mass m :
$\mathrm{E}^{2}=(\mathrm{pc})^{2}+\left(\mathrm{mc}^{2}\right)^{2}$.
a. Using the energy and momentum conservation equations, as well as the energy-momentum-mass relation for the proton and Δ, find the minimum proton energy E such that the reaction $\gamma+\mathrm{p} \rightarrow \Delta$ is allowed.

Eliminate ED and PD by squaring the two equations and

 subtracting:$(\mathrm{k}+\mathrm{E})^{2}=\mathrm{E}_{\Delta}{ }^{2}$
$(\mathrm{Pc}-\mathrm{k})^{2}=\left(\mathrm{P}_{\Delta} \mathrm{c}\right)^{2}$
$\mathrm{k}^{2}+2 \mathrm{kE}+\mathrm{E}^{2}-\left[(\mathrm{Pc})^{2}-2 \mathrm{Pck}+\mathrm{k}^{2}\right]=\mathrm{E}_{\Delta}{ }^{2}-\left(\mathrm{P}_{\Delta} \mathrm{c}\right)^{2}=\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}$
$2 \mathrm{k}[\mathrm{E}+\mathrm{Pc}]+\mathrm{E}^{2}-(\mathrm{Pc})^{2}=\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}$;
$2 \mathrm{k}[\mathrm{E}+\mathrm{Pc}]=\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}$
i. Approximate Solution, $\mathrm{E} \gg \mathrm{Mc} 2$, therefore $\mathrm{Pc} \approx \mathrm{E}$

$$
\begin{aligned}
& 4 \mathrm{kE} \approx\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] \\
& \mathrm{E} \approx\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(4 \mathrm{k}) \\
& \mathrm{E} \approx\left[\left(1232 \cdot 10^{6} \mathrm{eV}\right)^{2}-\left(93810^{6} \mathrm{eV}\right)^{2}\right] /(0.001 \mathrm{eV}) \\
& \quad=6.4 \bullet 10^{20} \mathrm{eV}=102 \mathrm{~J}
\end{aligned}
$$

The approximation E>>938 MeV is well justified
ii. Exact solution
$\mathrm{E}+\mathrm{Pc}=\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(2 \mathrm{k})$
$\mathrm{E}+\left[\mathrm{E}^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right]^{1 / 2}=\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(2 \mathrm{k})$
Isolate the square root

$$
\left[\mathrm{E}^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right]^{1 / 2}=\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(2 \mathrm{k})-\mathrm{E}
$$

$$
\mathrm{E}^{2}-\left(\mathrm{Mc}^{2}\right)^{2}=\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right]^{2} /(2 \mathrm{k})^{2}
$$

$$
-2 \mathrm{E}\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(2 \mathrm{k})-\mathrm{E}^{2}
$$

$$
2 \mathrm{E}\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(2 \mathrm{k})=\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right]^{2} /(2 \mathrm{k})^{2}
$$

$$
+\left(\mathrm{Mc}^{2}\right)^{2}
$$

$\mathrm{E}=\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right] /(4 \mathrm{k})+\mathrm{k}\left(\mathrm{Mc}^{2}\right)^{2} /\left[\left(\mathrm{M}_{\Delta} \mathrm{c}^{2}\right)^{2}-\left(\mathrm{Mc}^{2}\right)^{2}\right]$
The second term is a correction to the answer in i.
$\mathrm{E}=6.4 \cdot 10^{20} \mathrm{eV}+\left(2.5 \cdot 10^{-4} \mathrm{eV}\right) 1.4$
The second term is utterly negligible, it is 24 orders of magnitude less than the first term

