Physics 313 Astrophysics	Spring 2009
Prof C. Hyde	chyde'@'odu.edu
www.odu.edu/~chyde/Teaching	
Homework 7	due Wed March 25, 2009

1) The speed of light in a medium of index of refraction *n* is c/n, where *c* is the speed of light in vacuum. Relativistic charged particles can travel in the medium with a velocity *v* such that c/n < v < c. In this case, the particle will emit visible light all along its trajectory. The light is emitted at an angle θ relative to the particle direction, with $\cos(\theta) = c/(nv)$. The index of refraction of water is 1.33.

The relativistic energy *E* of a particle of rest mass *m* is $E=mc^2\gamma$ $\gamma = [1-\beta^2]^{-1/2}$ $\beta = v/c$.

- a. The rest mass of the electron is $mc^2=0.511$ MeV. Find the β value (close to 1) of an electron of energy 5.11 MeV. $\gamma = E/mc^2 = (5.11 \text{ MeV}) / (0.511 \text{ MeV}) = 10;$ $\beta = [1-1/\gamma^2]^{1/2} = [1-0.01]^{1/2} = [0.99]^{1/2} = 0.995$
- b. Find the Cerenkov angle for this electron in water. $\cos(\theta) = c/(nv) = 1/(nb) = 1/(0.995*1.33) = 0.756.$ $\theta = 40.9^{\circ}$.
- c. What is the lowest energy electron that will produce Cerenkov light in water (this limit is $\beta=1/n$ since the cosine function cannot be >1).

 $E = mc^{2} \gamma = mc^{2} / [1 - \beta^{2}]^{1/2} = mc^{2} / [1 - 1/n^{2}]^{1/2}$ $E = (0.511 \text{ MeV}) / [1 - 1/1.33^{2}]^{1/2} = (0.511 \text{ MeV}) / [0.435]^{1/2}$ E = 0.775 MeVKinetic Energy = E-mc^{2} = 0.264 MeV. 2) An ultra-high energy cosmic ray proton can be slowed down by the following inelastic collision with the photons of the 3° K cosmic black body radiation (CBR)

$$\gamma + p \rightarrow \Delta \rightarrow p + \pi^0$$
.

The photons in the CBR have a typical energy of $2.5 \cdot 10^{-4}$ eV. The proton has a rest mass of Mc²=938 ·10⁶ eV and the Δ -particle has a mass M_{Δ}c²=1232 ·10⁶ eV. Consider just the head on collision γ +p \rightarrow Δ . Energy and momentum must be conserved in this reaction.

Energy Conservation $k+E=E_{A}$.

Momentum Conservation $Pc-k = P_{\Lambda}c$,

where k is the photon energy (and momentum times c), E is the proton energy, P is the proton momentum, E_{Δ} is the Delta energy and P_{Δ} is the Δ momentum. The following relativistic relation holds for any particle of mass m:

 $E^2 = (pc)^2 + (mc^2)^2$.

a. Using the energy and momentum conservation equations, as well as the energy-momentum-mass relation for the proton and Δ , find the minimum proton energy E such that the reaction $\gamma + p \rightarrow \Delta$ is allowed.

Eliminate ED and PD by squaring the two equations and subtracting:

 $(k+E)^{2} = E_{\Delta}^{2}$ $(Pc-k)^{2} = (P_{\Delta}c)^{2}$ $k^{2}+2kE+E^{2} - [(Pc)^{2}-2Pck+k^{2}] = E_{\Delta}^{2} - (P_{\Delta}c)^{2} = (M_{\Delta}c^{2})^{2}$ $2k[E+Pc] + E^{2} - (Pc)^{2} = (M_{\Delta}c^{2})^{2};$ $2k[E+Pc] = (M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}$ $= Approximate Solution = E \ge Mc^{2} - therefore Beta$

i. Approximate Solution, E>>Mc2, therefore Pc \approx E 4kE $\approx [(M_{\Delta}c^2)^2 - (Mc^2)^2]$ E $\approx [(M_{\Delta}c^2)^2 - (Mc^2)^2] / (4k)$ E $\approx [(1232 \cdot 10^6 \text{ eV})^2 - (938 \cdot 10^6 \text{ eV})^2] / (0.001 \text{ eV})$ = 6.4 \cdot 10^{20} eV = 102 J

The approximation E>>938 MeV is well justified

ii. Exact solution

Exact solution $E+Pc = [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}] / (2k)$ $E+[E^{2}-(Mc^{2})^{2}]^{1/2} = [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}] / (2k) - E$ $E^{2}-(Mc^{2})^{2}]^{1/2} = [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}] / (2k) - E$ $E^{2}-(Mc^{2})^{2} = [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}] / (2k) - E^{2}.$ $2E[(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}] / (2k) = [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}]^{2} / (2k)^{2} + (Mc^{2})^{2}$ $E = [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}] / (4k) + k(Mc^{2})^{2} / [(M_{\Delta}c^{2})^{2} - (Mc^{2})^{2}]$ The second term is a correction to the answer in i. $E = 6.4 \cdot 10^{20} \text{ eV} + (2.5 \cdot 10^{-4} \text{ eV}) 1.4$ The second term is utterly negligible, it is 24 orders of

magnitude less than the first term