Physics 313 AstrophysicsSpring 2009Prof C. Hydechyde'@'odu.eduwww.odu.edu/~chyde/TeachingHomework 6due Wed March 18, 2009

- 1) Use the web page <u>www.nndc.bnl.gov/wallet/</u> (or equivalent) to find the energy release in the following fusion reactions.
 - a. ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O}$
 - b. ${}^{12}C + {}^{12}C \rightarrow {}^{24}Mg$
 - c. $p + {}^{12}C \rightarrow {}^{13}N + \gamma$.
- 2) Astrophysics in a Nutshell Chapter 3 Problem 7. The nuclear reaction rate in a star is proportional to

$$\langle \sigma v \rangle \propto \int_{0}^{\infty} f(E) dE$$

$$f(E) = e^{-E/(kT)}e^{-\sqrt{E_G/E}}$$

with $E_G = (\pi \alpha)^2 M_p c^2$, $\alpha = e^2 / (\hbar c) = 1/137...$

a. Show that the maximum value of f(E) occurs at

$$E = E_0 = \left[kT/2 \right]^{2/3} E_G^{1/3}$$

b. Form a Taylor series, to second order in ln[f(E)], to approximate f(E) as a Gaussian; i.e. find A and Δ in the approximation

$$f(E) \approx A e^{-(E - E_0)^2 / (2\Delta^2)}$$

c. Using the Gaussian identities

$$\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi} = \int_{-\infty}^{\infty} x^2 e^{-x^2/2} dx, \text{ show that}$$
$$\int_{0}^{\infty} f(E) dE \approx \sqrt{2\pi} f(E_0) \Delta \text{ if } E_0 >> \Delta.$$

3) The pp chain produces 2 neutrinos for every 26.2 MeV of fusion energy release. The solar flux of visible light reaching the upper atmosphere of the earth is ≈ 1000 W/m². Assume the typical photon in the solar spectrum is a green photon of energy hv= 2 eV.

- a. What is the number flux of visible photons reaching the upper atmosphere of the earth?
- b. What is the number flux of neutrinos reaching the earth?
- c. If the average energy of these neutrinos is 200 KeV, what fraction of the solar luminosity is carried away by neutrinos?

4) Astrophysics in a Nutshell Chapter 3 Problem 8.

The power production per unit mass of the pp->De⁺ ν reaction is (3.134)

$$\varepsilon = \frac{\rho}{M_H} \frac{2^{2/3}}{\sqrt{3}} \frac{QS_0 c}{M_H \sqrt{M_H c^2}} \frac{E_G^{1/6}}{(kT)^{2/3}} e^{-3[E_G/(4kT)]^{1/3}}$$

The "astrophysical S-factor" is $S_0=4 \cdot 10^{-46} \text{ cm}^2 \text{ KeV}$. For the first step in the chain, Q=2.2MeV, but for the whole pp chain Q= 26.2 MeV. Use values from the solar center, $\rho=150 \text{ g/cm}^3$.

- a. Perform dimensional analysis on the expression for ε to establish it has units of Energy per unit mass per second.
- b. Approximate ε as a power law $\varepsilon \approx \varepsilon_0 (T/T_0)^{\beta}$. Hint, make a Taylor series in ln ε as a function of $\ln(T/T_0)$ and expand around $\ln(T/T_0)=0$.
- c. Evaluate β for kT₀=1.0 KeV and $E_G = 500$ KeV.