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Part 1:
Second-order ODEs

Higher-order ODEs
« In the first part we considered solutions of first-order ordinary
differential equations by finite difference methods.

* Many problems in physics are governed by higher-order ODEs.
The second-order ODEs are most common ODEs.

* In general, a higher-order ODE can be replaced by a system of first-
order ODEs.

Example: Newton’s second law provides us with equation of motion

d%x _ (t dg
FroabACRET
Introducing dx/dt = v, we get a system of two first-order ODEs

dv
_—=, E=f(t,x,v)

A system of first-order ODEs

A system of first-order ODEs can be solved by any of the methods
developed for solving single ODEs.

» Care must be taking to ensure the proper copying all the solutions.
* When predictor — corrector or Runge-Kutta methods are used, each

step must be applied to all the equations before proceeding to the
next step.

* The step-size must be the same for all of the equations.
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A system of two first-order ODEs
e y)
—9—«1@"—%—& ] (*-)
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== fiexy)

Explicit Euler method
Xnt1 = Xy + f1(bn, X, Vo )AL
Yne1 = Yo + f5(tn, X5, ¥ )AL
Predictor-corrector
Xna1 = Xn + fi (b, X0, Y )AL

Vrs1 = Yu + fo(tn, X0, yu) At

1
X1 =X + 2-[f1(tn:xm)’n) + fi(tns1s Xne1s Yne1)]AE

1
Yiier = Yo+ 5o (6w X a) + fo(bes X1, Yna)1AE 5

Example: C++ 4t order RK for a system of two egs.

double rk4_2nd(double(*d1x)(double, double, double),
double(*dly)(double, double, double),
double ti, double xi, double yi, double tf,
double& xf, double& yf)

{
double h,t,klx,k2x,k3x,k4x,kly,k2y,k3y,kay;
h = tf-ti;
t = ti;
kix = h*d1x(t,xi,yi);
kly = h*dly(t,xi,yi);
k2x = h*dlx(t+h/2.0,xi+k1x/2.0,yi+k1ly/2.0);
k2y = h*dly(t+h/2.0,xi+k1x/2.0,yi+k1ly/2.0);
k3x = h*dlx(t+h/2.0,xi+k2x/2.0,yi+k2y/2.0);
k3y = h*dly(t+h/2.0,xi+k2x/2.0,yi+k2y/2.0);
k4x = h*dlx(t+h,xi+k3x,yi+k3y);
kdy = h*dly(t+h,xi+k3x,yi+k3y);
xf = xi + (kix + 2.0*%(k2x+k3x) + k4x)/6.0;
yf = yi + (kly + 2.0%(k2y+k3y) + kdy)/6.0;
return 0.0;

}
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X(t) and v(y)

Example: Harmonic oscillator

Ex_ g two first — order ODEs ‘2e w__k
mF_ X, as two first — order S T v, fran m—Y
with initial conditions x(0) = 0, v(0) = 1,k = 1,m = 1 and step 0.1
Explicit Euler RKF45

Explicit Euler — no conservation of energy! 7

Example: Harmonic oscillator with linear resistance

d’x B dx dx _ dv _ k a
" Ye T adt @w m m

with initial conditions x(0) =0, »(0) = 1,k =1,m=1,a = 0.2

RKF45 with step-size control (tolerance 10°)

x(t) and viy)

MatLab: RK method for a system of n 1st-order ODEs

%

*

RK4n Solution of a system of n first-order ODE
method: Runge-Kutta 4th-order
Alex G. November, 2020
call ... (supplied by a user)
dx = dnx(n, t, x) functions dx/dt where dx and x are arrays size n
input ...

n - number of first order equations

ti - initial time

tf - solution time

xi - initial values (array size n)
output ...

xf - solutions (array size n)

*/

%}

MatLab: RK method for a system of n 1st-order ODEs
function [xf] = RK4n(n,ti, tf, xi)
h = tf-ti;
& = @y
dx=dnx(n, t, xi);
for j =1:n
k1(3) = h*dx(3);
x(3) = xi(3) + k1(3)/2.0;
end
dx = dnx(n, t+h/2.0, x);
for j =1:n
k2(3)
x(3)
end
dx = dnx(n, t+h/2.0, x);
for j = 1:
k3(3)
x(3)
end
dx = dnx(n, t+h, x);
for j =1:n
ka(3) = h*dx(3);
xf(3) = xi(3) + k1(j)/6.0+k2(j)/3.0+k3(j)/3.0+k4(j)/6.0;
end
end % end of RK4n

h*dx(3);
xi(j) + k2(3)/2.8;

El

h*dx(3);
xi(3) + k3(3);

Part 2:

Particle dynamic

10

Faster methods for particle dynamics are needed

While RK methods very provide
excellent accuracy, considerable
computation time is needed for

Scientists create first billion-atom
biomolecular simulation

systems with MANY particles.
Now molecular dynamics
simulations involves up to a
billion of particles!

fon to date of an entire gene.

Researchers at Los Alamos National Laboratory have created
the largest simulation to date of an entire gene of DNA, a feat
that required one billion atoms to model and will help
researchers to better understand and develop cures for
diseases like cancer.

11

12
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Two most popular methods

The leap-frog and Verlet methods are the most popular methods.
Both the leap-frog and Verlet methods use that in Newton’s second law
X
m F= F(t,x,x")
the force depends only on position but not the velocity or time, i.e.
F(t,x,x") = F(x)

The leapfrog method

Consider Newton’s second law
dv o F(x) dx _
T ' T a "

Using n as a base point we can write

1
Vpoy =V, — VRAL + 2—11,'1'(At)z

1
Vpir = Uy + VLA + Z—V,'l'(At)z

then taking the difference v, ,, — v,_, gives

Vpi1 = Unoq + 20,At + 0(AL)?

2
Vn41 = VUng + TrTF(x")At

13

The leapfrog method (cont.)

For x usingn + 1 as a base point

1
Xp = Xpar — X4 AL+ z_x‘:L'+1(At)2

1
Xnpz = Xnpr + Xpp AL+ z—an(At)z

then

Xpiz = Xn + 20,4, At + 0(AL)?
Now both v and x together /\\

%
Vpg1 = Upoq + nTF(x")At calculate first  w.nv W~y o LESERRE Y

Xpiz = Xn + 2V, 41 At + 0(At)® now update x

We need v,,_, to start calculation. We can use backward Euler step

F(x
IO
m

n

14

The leapfrog method - summary

* The leapfrog method is a second-order method

« ltis conditionally stable, as long as the time-step At is constant

« It conserves (mostly) the energy of dynamical systems in a long run.
This is especially useful when computing orbital dynamics, as many
other integration schemes, such as 4™ order Runge-Kutta method,
do not conserve energy and allow the system to drift substantially
over time.

« The method is time-reversible, i.e. one can integrate forward n
steps, and then reverse the direction of integration and integrate
backwards n steps to arrive at the same starting position.

* There are a couple variations of the method.

15

The Verlet method (or Stormer-Verlet method)

The algorithm was first used by Delambert 1791. It has been rediscovered
many times since then.

L. Verlet used it in the 60-s for calculations in molecular dynamics

dv ., F() dx
& ' m a v

Using n as a base point we can write

1
Xp_q = Xp — XAt + 2—xT'l'(At)2 d SR Y

W=z ney w WAy N

1
Xpy1 = X + XAt + 2—xT'l'(At)2

s = Xy = 20506 X, = (gy—Xno1)/2A8 + 0(AL)?

Xni1 F Xnoq = 2%, + %,/ (AL)?

"

X = Xpy1 = 2Xn + Xpog F(xn)
" (At)? m -

16

The Verlet method (cont.)
1
Xpt1 = Xp + XA + fc;l’(At)z
Xnp1 = 2Xp + Xnoq _ F(x,)

(At)? m
Using the derivatives in the first equation gives

Fox) . .
T B Zdty = 8en_q AF m—(At) + 0(At)

X3 = (tpar = Xp-0)/288, X =

and we do not need velocities! But if we need we can use

v _ Xni2 — Xn
n+1 2At
Attention: we need x,_, to start the run, and we can use

one point behind

1R
Xp_q = X, — VAt + 2—m—(At)

17
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The Verlet method- summary

« Global errors: for x~0(At)?, for v~0(At)?

« The method is very popular in computing trajectories in molecular
dynamics simulations

« The Verlet method provides good numerical stability
* The method is time-reversible

* There is a velocity Verlet version similar to the leapfrog method.

Part 3a:

Oscillatory motion and chaos

19

Simple pendulum
Newton’s second law for rotational motion of a pendulum
d*9
1 F= Tg + Ta + Texternat
where 1, is the torque by the gravitational force, 7, is the torques by the
drag force, and 7,,..rnaq; is the external periodic force

For a point-like mass m on a string length L, I = mL?, T, = —Lmgsind

B df | Fey
Ny — ot
L mL? dt = mlL?

. do
= —w;sind —a dt_F foxt COS Wt

_ Fexe

g _ B
T Tar et

21

Simple pendulum without small angle approximation

Still disregarding 7, = 0, Torrernar = 0
429 L de d*y
== % sind =@ e fext coswt = dez

For 9, = 1.0 motion is periodic but the period of oscillations is larger than

—w} sind

the simple harmonic one since in Taylor series sind ~ 9 — :-:92 F oo

_ 08 Amplitude
T = anL_(1+1_19§+ 1;1934_“,) 06
g 16 3072 04

g” A \ \ \ AN/

2 0 F S B e\ R\ A /

gw \\/ \/ \| /

23
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Simple pendulum: simple harmonic motion 6 « 1
Using the approximation sind = 9 and setting 7, = 0, T.,;0; 0 = 0
d?9 , de 29 )
F= —wg sind — a dT+ fext cOSwWt = dtT__ —wg¥
Classical harmonic motion
6(t) = Acos(wot + @), T =2m/w,
" Amplitude i Phase space
o8
0
s 0z
2 £
g H
‘ 02
as
o8
40 ‘1 0. o 05 1
ampiude 2
22
Simple pendulum with dissipation
d* , do
T —wg sind —a i
Fora = 0.1.
\ Amplitude , .
08 . 06 — ™~
es ) 0
oaft {1
| [} 02
g 02 A
éa“/“‘\‘,\‘ﬁwﬂ\/\/\/\/\/\/v g°
Ll Y
1l 04
04 U \‘/
06 v 06
08 08
"o 0 20 3 40 s 6 70 80 1] 1
i
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amplitude

Resonance when w = wyg

d*9 B

Freani —wg9 + for COS WE
with w = w, and f,,, = 0.1

Amplitude

8 Phase space

“ r ﬂ\n 5
il v
; Mv[v J/u/ /“M H \/\/‘“

: I
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t ampitude

amplitude

Resonance when w = wg but sin9 # 9
d*9
bren

with w = wy and f,,, = 0.1

= —w} sind + f,,, cos wt
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The amplitude does not grow without bound. Do you see why?

25

Complex motion in a non-linear system — CHAOS!

d?9 . do
Froaniatt] sind — a dT+ fext COS Wt

High sensitivity to the initial condition when all there forces are in play.

amplitude

27

Complex motion in a non-linear system — CHAOS!

« Achaotic system is one with an extremely high sensitivity to
parameters or initial conditions

« The sensitivity to even miniscule changes is so high that, in practice,
it is impossible to predict the long range behavior unless the
parameters are known to infinite precision (which they never are in
practice)

+ Chaotic motion is not random

« Chaos is the deterministic behavior of a system displaying no
discernable regularity Anepucs

* Note: a double pendulum is a good
system to study chaos

srpiuce

29
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Complex motion in a non-linear system — CHAOS!

Ampittude Amplitude

=) o W =0 w0 40 w0 e

'
Phase space

28

Chaotic structure in phase space

Limit cycles
When a chaotic pendulum is driven by a not-too-large driving torque, it
is possible to pick the magnitude for this torque such that after the initial
transients die off, the average energy put into the system during one
period exactly balances the average energy dissipated by friction
during that period.

This leads to limit cycles
that appear as closed
ellipse-like figures.

(Yet unstable solutions

may make sporadic @ ®
B i Figure 15.5 (a) Position vs. time for two initial conditions of a chaotic pendulum that end up
Jumps between limit with the same limit cycle. (b) A phase space plot of position versus velocity for the limit cycle

shown n (a) (courtesy of W. Hager).

cycles.)

* from Landau et al. Computational Physics (2015)

30
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Chaotic structure in phase space

Limit cycles: Four dominant cycles

Phase space

amplitude

Chaotic structure in phase space

Predictable attractors

There are orbits, such as fixed points and limit cycles, into which the
system settles or returns to often, and that are not particularly sensitive
to initial conditions. If your location in phase space is near a predictable
attractor, ensuing times will bring you to it.

Phase space

velocity

31
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Chaotic structure in phase space

Strange attractors

Well-defined, yet complicated, semi-periodic behaviors that appear to
be uncorrelated with the motion at an earlier time. They are
distinguished from predictable attractors by being fractal chaotic, and
highly sensitive to the initial conditions. Even after millions of
oscillations, the motion remains attracted to them.

Phase space

velocity.

30 20 10 [ 10 20 30
ampitude

Chaotic structure in phase space

Chaotic paths

Regions of phase space that appear as filled-in bands rather than lines.
Continuity within the bands implies complicated behaviors, yet still with
simple underlying structure.

33

Butterfly effect

One of the classic remarks about the hypersensitivity of chaotic
systems to the initial conditions is that the weather pattern in North
America is hard to predict well because it is sensitive to the flapping of
butterfly wings in South America.

Although this appears to be counterintuitive because we know that
systems with essentially identical initial conditions should behave the
same, eventually the systems diverge.

Amplitude

ampltude

35
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The Lorenz model
In 1962 Lorenz was looking for a simple model for weather predictions
and simplified the heat-transport equations to the three equations.

dx 10( )
i

@ _ + 28
2 x —y

dz _ 8
T
The solution of these simple nonlinear equations gave the complicated

behavior that has led to the modern interest in chaos!

36
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Examples: solutions to the Lorenz model

IR

u\u

JGAAE)

l L K
] M

ﬂ I ﬁ ‘M"\W

10

. 2 s 0

Hamiltonian chaos
When a number of degrees of freedom becomes large, the possibility of
chaotic behavior becomes more likely.

Examples:
The solar system, particles in EM fields, the rings of Saturn, ...

Attention: no dissipation!

Constants of motion: Energy, Momentum (linear, angular)

37

Lyapunov exponent

How can we quantify this lack of predictably?
This divergence of the trajectories can be described by the Lyapunov
exponent A, which is defined by the relation
|Ax, | = |Ax,|e?n
where Ax, is the difference between the trajectories at time n. If the

Lyapunov exponent A is positive, then nearby trajectories diverge
exponentially.

Chaotic behavior is characterized by the exponential divergence of
nearby trajectories.

39

“Control your chaos” from the movie - The Witcher

* The dream of classical physics was that if the initial conditions and
all the forces acting on a system were known, then we could predict
the future with as much precision as we desire.

* The existence of chaos has shattered that dream.

+ However, if a system is chaotic, we can still control its behavior with
small, but carefully chosen, perturbations of the system.

* Good illustration can be found in Gould et all, Computer simulation
methods. Application to physical systems (2007)

41

38
Lyapunov exponent. |Ax, | = |Axy|etn
Example
102} e
A
“ [ N
<
104 A /‘.fﬂ
A7
L Na"AR
Iad
U] ,/‘
SN
LA
108 : - . .
0 10 20 30 40 50
n
40
Part 3a:
Projectile motion
42
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2D (2-dimensional) projectile motion

Forces: gravity, drag force and potentially magnus force (spin related)

d%x dx dv,
) = Fpx or = m == Fox(ve,vy)
d’y dy dv,
m == -mg + Fp, or = vy, m e —mg + Fpy (Vx, vy)

Initial value problem:
x(0) = x,, x'(0) = v, (0) = vy
y'(0) = v, (0) = v,
The system of two second-order ODEs can be rewritten as a system of
four first-order ODEs.

¥(0) = o,

All the methods studied before for solving first-order ODEs can be used
here.

43

The drag force (cont.)

In the (x,y) plane the quadratic drag force can be written as
Fpy = —cv?cosf,  Fpy,=—cv?sin@
where v? = v + v}

Since cos @ = v, /v,sinf = v, /v =
VD
Fpy = —cvv

Fpy = —cyyv

and c is a coefficient that is often approximated as
-1 CpA

c= 3 o)

where C is the drag coefficient (dimensionless) depending on an object shape

and can be determined by wind tunnel measurements. For many objects it can

be approximated by a value within 0.05 — 1.0. A is is the cross sectional area.

p is the density of the air. Since air density varies with altitude, one may

approximate it as p = p, exp(—y/y,) Where p, is the density at sea level
(y =0) and y, ~ 10,000m.

45

1
The drag force (cont.) c=30nd

Generally the coefficient C depends depends on speed v (aerodynamic drag
crisis).

Example for baseball: Frohlich Am J. Phys. 52, 325 (1984).

. .
of
| )
.
s 0 g s 1 sk
{Refs. 16, 10). “drag crisis,”

5 o
0 10
that occurs at about R = 4 10°. The vertical lines correspond to veloc- REYNOLDS NUMBER

ities of 1 m/s and 42.67 m/s for a smooth sphere with the diameter of a

baseball. 42.67 m/s is the terminal velocity of a baseball as measured by

Briggs,” and is approximately the velocity of the fastest major league
itch

Fig 2. Effct o the surface roughness of a sphere on drag coefficient C, at
Reynolds numbers near the drag crisis. Surface roughness is parameter-
ized by k /d where K is the height ofthe roughness elements, and dis the

i 1

jynami  and that €, = 0.5 for all

ball—k /d = 1250 10, type 2 ball—k /d = S00 10~ type 3 ball—
k/d=150x10"", type 4 ball—smooth sphere; and type 5 ball—
€, = 0.5forall R. Thetop horizontal scale shows the equivalent air speed

Achenbach.'
C, for the calculations reported in this paper.

47

The drag force

The drag force ﬁD and the velocity v point in opposite directions

Fy = ~f @)D,
where 7 is the unit vector in the direction of velocity, and f(v) is the
magnitude of the drug force.

The function f(v) that give the magnitude of the air resistance varies
with v in a complicated way, however often it can be well approximated
as*

f) = bc+cv? = fiin +fquaa
In many practical cases we will work with the quadratic drag component
The physical origin of the terms: The linear term corresponds to the
viscosity drag of the medium. The quadratic term describes the
acceleration of the mass of air pushed by the projectile.

*for more details see Classical mechanics by J.R Taylor (Chapter 2)

Terminal speed
from
1 2
mg = Z'CPAV»:
. speed speed distance
object (mis) (mph) | (m) 95%
shot 145 316 2500
sky diver 60 130 430
baseball 42 92 210
basketball 20 44 47
raindrop 7 15 6
parachutist 5 1 3
e
Physics of baseball
*Physics of baseball — from R.K. Adair, The physics of baseball
0.6 : T
smooth ball
\
E04r \ ]
© |
8 i
g o02r \ normal 1
a [ baseball
L V4 4
rough ball
0 . \ \
0 50 100 150 200
v (miles per hour)
48
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The equations of motion

For motion in (x, y) plane

d*x
M= —cv,v
dZ
m = —mg = cvyv

where m is the mass of the object, g is the free-fall acceleration, and ¢ is the
drag coefficient.

Note: a good test for numerical solutions is to compare with analytic solutions
forc=0.

49

The effect of spin (Magnus force)

Force on a spinning object moving through air can be approximated as

A common approximation: F,, = S,wv, where the coefficient S, can be found
elsewhere.

(Magnus force)
Fy = SO) &x
backspin top spin
F\\ V4O
Fn v
v-m D E—
FD Q V
- Vo
[y v Fu

Example: the effect of air resistance

51

THE PHYSICS
OF SOCCER

Usraa

250 [ T T T T 0
WWI cannon —— no air resistance
— yes (same air density)
200 | speed 1600 m/s —— Yes p=p,exp(-yly,)
angle 52°
drag coeff. C=0.06
air density 1.25kg/m’
£ 150 | Rogeess=0.1 M i
=3 rcjecta=94 kG
@
°
3
£ 100 | i
<
50 |- .
0 L L L
0 50 100 150 200 250
range (km)
50
Example
T T T -
Golf ball —— no air resistance
— air resistance
30 -  speed 70 m/s ) 4 4
angle 9 degrees with backspin
—~ 20 F .
E
2
2
K
10 i
0 L L
0 50 100 150 200 250
distance (m) :

53

Part 3b:

Classical scattering

54

3/6/22



Classical scattering on one center

Consider scattering a projectile on a potential
center. Let the force on the projectile from the

les=t4

target to be Coulomb force . v %

3 Z,Z I

ek 172 t A Y
=

where the notations are obvious. Since F, = F cos ¥, F, = Fsin9 and

cosd = x/r, sind =y/r,withr? =x2? + y2. Then

d*x Z,Z,
Moy = k T
d*y 2,2;
Mg ke

A trajectory can be evaluated for given initial conditions: x,, v, Yo, Vyo-
Use conservation of energy and angular momentum as a test.

E=mv?/2+kZ,Z./T, L, = m(xv, — yv,).

Differential cross section

There are two key parameters of the Proeste

collisional theory:

The impact parameter b is defined as

their perpendicular distance from the projectiles incoming straight line

tos aa\

path to parallel axis through the target’s center.

The scattering angle 0 is defined as the angle between the incoming
and outgoing velocities of the projectile.

The differential cross section can be calculated from

do b |db

a sﬁ‘dﬁ
Calculations can be tested by using the analytic solution (Rutherford
scattering)

kZ,2, do kZ,Z : mvd
0 = 2atan | e — _pt K= = ¢
bmvi dQ 4K sin%(6/2) 2

55
Rutherford scattering on heavy target
Rutherford angle (analytical) = 52.89 deg
Angle projectile (numerical) = 52.23 deg
2D Rutherford scattering b = 2.00
y position
20
xpostion
w0 0 2 0 0 2 w4
10
20
30
0
57

Classical scattering on a light target
In case of scattering on a light target (when the target can move)
equations of motion are

&2x 2,7,
My ==k —=(t1 = %;)
d*y, Z,Z, N
my iz :kT()H_YZ)

d*x, 2,7,
m; F: k T(Xz —x1)

d*y, Z,Z,
m; dT: k T(Jﬁ - 2)

Where m,; and m, are masses of the projectile and target, etc.

=] = (00 = %) + (0 +5,)°12

59
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Differential cross section

Excellent agreement with the analytic (blue line) results
2D Rutherford scattering v0 = 1.0

10° T T T T

0 20 4 60 80 100 120 140 160 180
angle (deg)
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Scattering on light target (recoil)

2D Rutherford scattering b = 2.00

¥ position

X position

60
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Scattering on two centers (or more centers)
Let a projectile (particle 1) scatters on two centers (2 and 3)

d?x, 7,2, 7,7,
my ==k =y = %) + k. ——(x; — X3)
dt , L)

d?y. Z,Z. VAVA
my —21= k %(}’1 -y +k 13_3(}’1 - ¥3)
dt T Tia

61

Part 3c:

Planetary and satellite motion

63

Properties of the gravitational force

1. Central force

The gravitational force has two general properties: its magnitude
depends only on the separation of the particles, and its direction is
along the line joining the particles. Such a force is called a central
force. The assumption of a central force implies that the orbit of the
Earth (if m is Earth and M is the Sun) is restricted to a plane (x,y), and
the angular momentum is conserved

L, = m(xy, —yv,)
2. Total energy is conserved

mM

1
E= snv?—G —
2 T

Scattering on four centers

ing b =069
y position

x position

2 3 4

62

Gravitational force

Newton’s universal law of gravitation states that a particle of mass M
attracts another particle of mass m with a force given by

o mM
F=—-G —+
r
where the vector 7 is directed from M to m. The negative sign in implies
that the gravitational force is attractive. And G is the gravitational

constant.

64
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Equations of motion

If we fix the coordinate system at the mass M, the equation of motion of
of mass m is
d*7 mM
M = = et
dt? 7
It is convenient to write the forces and equations of motion in Cartesian
coordinates with r* = x* + y*

mM mM
F = —G ===C0s0 = =G =i
T T
mM
F, = =G ===Sin) = —G =
d*x
Tz - G
d? M
VS
tZ 7'3

66
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Circular orbits Examples

For circular orbits v = 1 on the figure corresponds to v = 27

2 p mM . Planetary motion
= = \
Then for the speed and period 3L )
GM\'/? 27 :
v= (% 5 T= —— 2 d
T v —
It is much more convenient to work with astronomical units instead of 1L J
the Sl units. Thus, for the solar system we can introduce the unit of >
distance as 1 AU = distance to the Sun, and the unit of time as 1 year. 0 9
Then with r = 1 and T = 1 we have v = 2m and GM = 4m2.
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Examples: Apollo 13 (the mission to the Moon) Examples: Apollo 13 (the mission to the Moon)
Flightpath simulation
Command module/service
module separation 138:01:48 Moon's Orbit
Undacking 141:20:00. Fourth midcourse comection 137:39:52 “
Entry interface 142:40:46 o
Thind mideours comecion 10518:28
Landing 14254:41
Transcarth nection 79:27:33
Retum to Earth.
Translunar injection maneuv er 02:35:46 N
S-VB engine cutoff 00:12:30 o
S8 nging iniion 000954
S enios ki 0002245 Tothe Moon |
7 ) ry 2 0 y )
Lift-off
Rk Cryogeric axygen tank incdent 55:54:52
m;{;:;::::‘:;do;?"; First mideourse comection 30:40:50
Docking 03:13:09
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