O
OLD DOMINION

Tools of computational physics
A. Godunov

Major tools of computational physics
Computers: hardware

Computers: operating systems
Computers: programming languages

updated 31 August 2022

8/31/22

Part 1:

Tools of computational physics

Computational Physics
Computing has become a central tool in physics!

From R. Landau “Computational Physics”

Physics
application
[
cs' P Math
hard/software techniques
@ Evaluate & Explore
Figure 11 (2)A ion of the multidisciplinary nature of fonal physics as an

overlap of physics, applied mathematics and computer science, and as a bridge among them.
(b) Simulation has been added to experiment and theory as a basic approach in the search
for scientific truth. Although this book focuses on simulation, we present it as part of the
scientific process.

Toolbox
» Physics: methods for computer simulations

* Math: solving numerical problems

+ Hardware and Software

Hardware and software

The basic ideas behind computational physics are hardware and
software independent

However, for solving a problem in hand one may need to consider
advantages and disadvantages various choices.

Critical or important

+ Development time

« Computational time

« Computational memory (RAM)

« Storage memory

Use right tools for your problem!

Software

Principal parts

1. Operating system

2. Ideally IDE integrated development environment + language(s)
a) Editor
b) Compiler(s) (for high-level languages)
c) Libraries (modules, toolboxes,...)

3. Optional:
a) Lintand other static code analyzers
b) Debugger
c) Profilers

d) Report generators

Part 2:

Tools: Hardware

8/31/22

Hardware 1.

=] W

s U0 i 9 g
%‘ $ e

S8

Supercomputer

Internal hardware

Most important for computing

CPU(s) - central processing unit (how many + how fast)
also - cache memory: cache 1, cache 2

RAM -random-access memory (GB)
communication with CPU by bus

GPU - Graphic Processor Unit (how many + how fast)
Can speed up calculations considerably!

Network Interface (MB/GB per sec)
HDD — Hard Disk Drive (TB)

8
Top 500
The TOP500 lists the 500 most powerful commercially available
computer systems nifps:/top500.0rg

[TOPS500 LIST - JUNE 2021 TOPS500 LIST - JUNE 2022

w e g >

Rk System Gores o) (o))

a0 s 12548 18T

Part 3:

Software: operating systems

10

Two major families

1. Unix and Unix-like
a) Unix - commercial versions: AlX, HP-UX, Solaris, ...
b) Apple - macOS
c) Linux — many distributions

2. Windows

Share ofoeratln 5 stems for desktos/la ptops

75 ZW % W-l 51% € " 7u% \ 5%

ystem Market share Wordwide-July 2022

Share of operating systems for clusters/supercomputers:
Linux now runs on all the fastest 500 supercomputers in the world

11

12

https://top500.org/

8/31/22

UNIX family
Developed in around 1970 in Bell Labs research center

1. Powerful beyond imagination.

Linus is based on Unix

2

3

4. Robust and small kernel.

5. Very safe: sandboxing and rich file permission system.
6

Plenty of tools
editors, programming languages, ...

Philosophy of Unix/Linux: “Building blocks” + “glue”
« Building blocks: programs do only one thing, but do it well

* Glue: easy combine various blocks.

ALL the Top 500 supercomputers in the world run on Linux.

Windows
Generally available since 1992
1. Most popular OS in the world for personal computers and laptops.

2. The latest version is Windows 11.

13

Part 4:

Software: Programming languages

15

Computer languages

Three basic modes to run a code

1. Interpreted: Python, Matlab, Mathematica, R.
2. Compiled: Fortran, C/C++.

3. JIT (Just-in-Time) compilation: Julia
Interpreted languages can we used with:

1. Acommand line

2. Ascriptfile.

17

14
Programming languages
Important questions
1. Which language to learn?
2. Which language to use?
3. Dol need to learn new language(s)?
Most common in physics
+ C and C++ (current standard C++20)
« Python
» Fortran
* Matlab
* Julia
- R
16
16
C
Created in the early 1970s by Dennis Ritchie at Bell Labs,
+ General purpose, multi-paradigm, compiled language
« By design, C's features reflect the capabilities of the targeted CPUs
« It was designed to be compiled to provide low-level access to
memory and language constructs that map efficiently to machine
instructions
» Many languages have based directly or indirectly on C, including
C++, C#, Java, JavaScript, Julia, Perl, PHP, Python, Ruby, Swift, ...
18
18

8/31/22

C++

Developed by Bjarne Stroustrup at Bells Labs in the early 1980s

« General purpose, multi-paradigm, compiled language

* C/C++ is the infrastructure of much of the modern computing world.
« Powerful language: you can code anything in C++

« Easy integration with multiprocessor programming
OpenMP, MPI, CUDA, OpenCL, ...

« If you know Unix/Linux and C/C++, you can master everything else

« Excellent compilers (including open-source) and tools.

« Top performance in terms of speed.

C++

Some disadvantages

* Hard language to learn, even harder to master

» Large specification: C++20 (This causes, at times, portability issues)

* Matrix indexing starts at zero

19
FORTRAN (formula translator)
Grandfather of all modern languages — developed in 1957 (IBM)
« General purpose, multi-paradigm, compiled language
« Last version Fortran 2018
« Lot of high-quality libraries (both numerical and applications)
« Still widely used in science in engineering
weather forecast, nuclear weapon research and development, ...
« Easy to learn, portable, nice array support, easy to parallelize
« Generally available on clusters and supercomputers
21
Python
Designed by Guido von Rossum around 1991
« General purpose, multi-paradigm, interpreted language
« Open source
* Intuitive — easy to learn
« Scientific computation modules: NumPy, SciPy, and SymPy
« Plotting modules: matplotlib and ggplot.
« Preinstalled on many systems (e.g. macOS)
23

20
FORTRAN (formula translator)
Some disadvantages
« Small community of users
* Most Fortran compilers are proprietary
22
Python
Some disadvantages
» Considerable time penalty
+ Python’s memory usage is high
» Python’s functional programming can be difficult to read
+ Runtime Errors: One of the major drawbacks of this language is that
its design has numerous issues
24
24

8/31/22

MATLAB

Started in the late 1970s, released commercially in 1984.
https://www.mathworks.com/products/matlab.htmil

* General purpose, multi-paradigm, interpreted language
« Widely used in engineering and industry

* Plenty of codes around
for science, engineering and economics.

* Many useful toolboxes

* Great IDE (Integrated Development Environment)

« Interacts reasonably well with C/C++, Fortran, and R
Some disadvantages

« Can be expensive

< Tight integration with Java

Other languages

Julia

* Modern, high-performance programming language designed for
scientific computation and data manipulation.

» Designed for parallelism and cloud computing. Syntax close to
Matlab. However, at early stages of life (can be unstable)

R

» High level, open-source language for statistical computation
» Widely used for big data, easy to parallelize

Mathematica

* Mainly oriented toward symbolic computation

» Programming approach is different from other languages.

And more: C#, Javascript, PHP, Perl, Swift, Ruby, ...

25

Compare times of calculation ...

Results depends on a model/test but here are some average numbers

C++ 1.00
Fortran 0.90
Python 50.0
Matlab 10.0
Mathematica from 4.0 (idiomatic) to 900 (base)
Julia 3.0
R 250

27

C++ compilers and IDEs

Microsoft Visual C++ compiler
https://visualstudio.microsoft.com/vs/features/cplusplus/
Windows (IDE included)

Xcode (from Apple)
https://developer.apple.com/xcode/
macOS (IDE included)

Intel C++ compiler

www.intel.com/content/www; n/developer/tools/oneapi/dpc-compiler.html
Windows, macOS, Linux (works with Microsoft Visual Studio)
Dev-C++

http://www.bloodshed.net
Windows (IDE included) (open source)

29

26

Summary

+ C++ good to learn (most powerful general programming language)
if you master C++ you can quickly learn anything else.

= Fortran very powerful but learn only if needed (legacy codes or
libraries)

« Python easy to learn, open source, but generally much slower than
C++ and Fortran

« MATLAB convenient with great IDE, making graphs, multiple
toolboxes available

+ Mathematica good problem-solving environment but programming
approach is different from other languages

« Java - rather no, unless the use of Virtual machine is important

28

Fortran compilers and IDEs

ABSoft

https://www.absoft.com
Windows, macOS, Linux (IDE included)

NAG (Numerical Algorithmic Group)

Windows, macOS, Linux (IDE included)

Intel Fortran compiler

www.intel.comy/content/www; n/developer/tools/oneapi/fortran-compiler.html
Windows (IDE: Microsoft Visual Studio), macOS (IDE: Xcode),

Linux (IDE: Eclipse)

30

http://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
http://www.bloodshed.net/
https://www.absoft.com/
https://www.nag.com/content/nag-fortran-compiler
http://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html

Python

Python.org
https://www.python.org
Windows, macOS
Anaconda

Windows, macOS

IDEs (for Windows, macOS and Linux)
« IDLE https://docs.python.org/3/library/idle.html

* Visual studio https:/visualstudio.microsoft.com/vs/features/python/

* Spyder hitps://www.spvder-ide.org
* Atom https://atom.io.

« And many more ...

31

Example: a circle using C++

// calculation: the diameter, circumference, and area of a circle
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
const double pi=3.1415926
double radius, diameter, circumference, area;
cout << "enter radius as float " << endl
cin >> radius;
diameter = 2.0*radius;
circumference = 2.0*pi*radius
area = pi*pow(radius,2);
cout.setf(ios::fixed | ios::showpoint);
cout.width(10);
cout.precision(5);

cout << "radius radius << endl;
cout << "diameter = << diameter << endl;
cout << "circumf. << circumference << endl;
cout << "area area << endl;
return @;

33

Example: a circle using Python

-*- coding: utf-8 -*-
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
by RH Landau, et all."""

Area.py: Area of a circle, simple program
from math import pi

=1

= 1.3
2.% pi* r

= pi * p¥e2

>0 =z
"

print ('Program number =', N, ‘\nr, C, A=", r, C, A)

35

HOW TO PROGRAM

Books ... so many

ESSENTIAL
MATLAB

cing
teNenCie1d
S || ORELLY st

32

Example: a circle using MATLAB

% calculation: the diameter, circumference, and area
% of a circle with a given radius

Pi = 3.1415926;

prompt = 'Enter radius of a circle \n';
radius = input(prompt);

diameter = 2.0*radius;
circumference = 2.0*Pi*radius;
area = pi*radius*radius;

fprintf(' radius %8.4f \n',radius);
fprintf(' diameter %8.4f \n',diameter);
fprintf(' circumference %8.4f \n',circumference);
fprintf(' area %8.4f \n',area);

%end

34

Example: Fortran - Fibonacci prime numbers

program fibonacci
the program generates Fibonacci numbers and chooses only prime numbers
f(0) = @
f(1) = 1
£(n) = f(n-1) + f(n-2) for n>1
implicit none
1 f(0:100)
i, 3
1 oprime*s

1

,40
= f(i-1) + f(i-2)
! check for prime numbers

prime = 'prime’
do j=2,f(i)-1
if (F(i)
prime = '
exit
end if
end do
write (*,102) i, f(i), prime

(£(1)/3)*3) then

end do
102 format(i3, i12, a6)
stop
end

36

https://www.anaconda.com/products/individual
https://visualstudio.microsoft.com/vs/features/python/
https://www.spyder-ide.org/
https://atom.io/

Other items
1. Version Control
2. Backups

3. Dynamic notebooks (Jupiter, Markdown, ...)

37

High-performance computing (HPC)

Deals with scientific problems that require substantial computational
power.

Usually, but not always, HPC involves the use of several processors:
* Multi-core/many-core CPUs (in a single machine or networked).
« Many-core coprocessors.

« GPUs (graphics processing units).

* TPUs (tensor processing units).

* FPGAs (field-programmable gate arrays)

“Amateurs talk about the speed of their processors, but professionals
study coding techniques” from Gen. Robert H. Barrow, USMC (27th
Commandant of the US Marine Corps)

39

Few quotes

“Spend your intellectual energies on the current problem - not on fancy
tools. When the volume and sophistication of your problems demand
these weapons you will know it. That is the time to learn a new tool -
and learn it by re-doing an already-solved problem, not a new one.”
F.S. Acton

"I realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.”

Maurice Wilkes, after the first attempts to write programs for the
EDSAC computer

"| conclude that there are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies
and the other way is to make it so complicated that there are no
obvious deficiencies.”

Charles Hoare, inventor of the QuickSort algorithm, in his 1990 ACM
Turing Award Lecture

41

8/31/22

Part 4b:
High Performance Computing (HPC)

38

High-performance computing (HPC)
Resources

» Livermore National Lab

* HPC carpentry

* More

And many books

40

https://hpc.llnl.gov/training/
https://www.hpc-carpentry.org/
https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

